Cancer tissue-like structures were developed by using established human tumor cell lines in perfusion-based bioreactor systems. In colorectal cancer (CRC) cell lines, perfusion allowed more homogeneous scaffold seeding than tri-dimensional (3D) static cultures and significantly (13.7 fold, p<0.0001) higher proliferation. Resulting tissues exhibited morphology and phenotypes similar to xenografts generated in immunodeficient mice. Whole transcriptome analysis of 2D, 3D static and 3D perfusion cultures revealed the highest correlation between xenografts and 3D perfusion cultures (r=0.985). Clinically relevant concentrations of 5-FU, used in neo- and adjuvant CRC treatment, had no effect on numbers of HT-29 CRC cells cultured in 3D perfusion or xenografts, as compared with a 55.8% reduction in 2D cultures. Treatment induced apoptosis in 2D cultures, but only “nucleolar stress” in perfused cells and xenografts, consistent with partial responsiveness. In 3D perfusion cultures BCL-2, TRAF1, and FLIP gene expression was marginally affected, as compared with significant down-regulation in 2D cell cultures. Accordingly, ABT-199 BCL-2 inhibitor, induced cytostatic effects in 3D perfusion but not in 2D cell cultures (p=0.003). Tumor cells from partially responsive (Dworak 2) patients undergoing neo-adjuvant treatment, typically (10/11) expressed BCL-2, as compared with 0/3 highly (Dworak 3-4) responsive and 4/15 fully resistant CRC (Dworak 0/1, p=0.03), closely matching 3D perfusion cultures data. These results indicate that 3D perfusion cultures efficiently mimic phenotypic and functional features observed in xenografts and clinical specimens. These models may be of critical translational relevance to address fundamental human tumor cell biology issues and to develop predictive pre-clinical tests of novel compounds. Overall design: Expression profiles of colorectal cancer cell lines cultured in 2D, 3D static, 3D perfusion or growing as xenografts were generated by deep sequencing, in triplicates, using Illumina HiSeq2000.
Bioreactor-engineered cancer tissue-like structures mimic phenotypes, gene expression profiles and drug resistance patterns observed "in vivo".
No sample metadata fields
View SamplesWhile the hypothalamo-pituitary-adrenal axis (HPA) activates a general stress response by increasing glucocorticoid (Gc) synthesis, biological stress resulting from infections triggers the inflammatory response through production of cytokines. The pituitary gland integrates some of these signals by responding to the pro-inflammatory cytokines IL6 and LIF and to a negative Gc feedback loop. The present work used whole-genome approaches to define the LIF/STAT3 regulatory network and to delineate cross-talk between this pathway and Gc action. Genome-wide ChIP-chip identified 3 449 STAT3 binding sites, whereas 2 396 genes regulated by LIF and/or Gc were found by expression profiling. Surprisingly, LIF on its own changed expression of only 85 genes but the joint action of LIF and Gc potentiated the expression of more than a thousand genes. Accordingly, activation of both LIF and Gc pathways also potentiated STAT3 and GR recruitment to many STAT3 targets. Our analyses revealed an unexpected gene cluster that requires both stimuli for delayed activation: 83% of the genes in this cluster are involved in different cell defense mechanisms. Thus, stressors that trigger both general stress and inflammatory responses lead to activation of a stereotypic innate cellular defense response.
Regulatory network analyses reveal genome-wide potentiation of LIF signaling by glucocorticoids and define an innate cell defense response.
Specimen part, Time
View SamplesPitx3 is a transcription factor that is expressed in all midbrain dopaminergic (mDA) neurons during early development, but later becomes restricted in dopaminergic subsets of substantia nigra compacta (SNc) and of the ventral tegmental are (VTA) that are vulnerable to neurodegenerative stress (MPTP, 6-OHDA, rotenone, Parkinson's disease). Overall, in mice, Pitx3 is required for developmental survival of ventral SNc neurons and for postnatal survival of VTA neurons (after postnatal day 40). With the aim of determining the gene networks that distinguish Pitx3-vulnerable (Pitx3-positive) from Pitx3-resistant (Pitx3-negative) subsets of SNc and VTA, we performed a comparison at the transcriptome level between FAC-sorted mDA neurons of SNc and VTA that were obtained from wild-type and Pitx3-/- newborn mice. The latter mice have already lost the majority of their TH+Calb1- mDA neurons of ventral SNc (Pitx3-dependent), but their TH+Calb1+ neurons of dorsal SNc (Pitx3-independent), including all of VTA neurons (50% are Pitx3-dependent and 50% Pitx3-independent), are unaffected by Pitx3 deletion. At postnatal day 40, Pitx3-/- mice display a marked loss of dopaminergic subsets of VTA that normally co-express Pitx3 and Calb1 (Pitx3-dependent neurons of VTA).
Rgs6 is required for adult maintenance of dopaminergic neurons in the ventral substantia nigra.
Specimen part
View SamplesAnalysis of the transcriptional profiles of mRNA and microRNA in Rasless fibroblasts. 4-Hydroxy-tamoxifen (4-OHT) treatment triggers removal of K-Ras expression in [H-Ras-/-;N-Ras-/-;K-Raslox/lox;RERTert/ert ] mouse fibroblasts (named K-Raslox) generating Rasless MEFs which are unable to proliferate, but recover proliferative ability after ectopic expression of constitutively active downstream kinases such as BRAF and MEK1.
Reversible, interrelated mRNA and miRNA expression patterns in the transcriptome of Rasless fibroblasts: functional and mechanistic implications.
Specimen part, Cell line, Treatment
View SamplesTo analyse and understand the differentially expressed genes following treatment with synthetic androgen (R1881) Overall design: LNCaP or LAPC4 cells were plated in RPMI 1640 media with no phenol red and with 5% charcoal stripped serum, sodium pyruvate, penicillin and streptomycin. After 48h (to allow adnrogen deprivation), fresh media was added, with 96% ethanol or the synthetic androgen R1881 (10nM concentration). 24h later, cells were harvested for RNA purification using the QIAGEN RNeasy plus purification kit. RNA was then enriched for mRNA and then sequenced.
RNA sequencing data of human prostate cancer cells treated with androgens.
Treatment, Subject
View SamplescJun is a transcription factor activated by phosphorylation by SAPK/JNK MAP kinase pathway that has been linked to atherosclerosis. Adenovirus mediated gene transfer of a dominant negative form of cJun in C57BL/6 mice increased greatly the apolipoprotein E (ApoE) mRNA and plasma apoE levels and induced dyslipidmia, characterized by increased plasma cholesterol, triglyceride and VLDL levels and accumulation of discoidal HDL particles. Unexpectedly, infection of ApoE-/- mice with adenovirus expressing dn-cJun reduced by 50% plasma cholesterol, suggesting that the dn-cJun affected other genes that control plamsa cholesterol. To determine the molecular pathways implicated in this process we performed whole genome expression profiling using total RNA from the liver of infected ApoE-/- mice.
A dominant negative form of the transcription factor c-Jun affects genes that have opposing effects on lipid homeostasis in mice.
No sample metadata fields
View SamplesAortic valve regurgitation (AR) imposes a severe volume overload to the left ventricle (LV) which results in dilation, eccentric hypertrophy and eventually loss of function. Little is known about the impact of AR on LV gene expression. We therefore conducted a gene expression profiling study in the LV of male Wistar rats with chronic (9 months) and severe AR.
Multiple short-chain dehydrogenases/reductases are regulated in pathological cardiac hypertrophy.
Sex
View SamplesWe applied in parallel RNA-Seq and Ribosome-profiling analyses to immortalized human primary BJ fibroblast cells under the following conditions: normal proliferation, quiescence (induced by serum depletion), senescence (induced by activation of the oncogenic RASG12V gene, and examined at early (5 days; pre-senescent state) and late (14 days; fully senescent state) time points), and neoplastic transformation (induced by RASG12V in the background of stable p53 and p16INK4A knockdowns and SV40 small-T expression. Overall design: RNA-seq, using Illumina HiSeq 2000, was applied to BJ cells under 5 conditions: proliferation, quiescence, pre-senescence, full-senescence, and transfomed. Ribosome profiling, using Illumina HiSeq 2000, was applied to BJ cells under 5 conditions: proliferation, quiescence, pre-senescence, full-senescence, and transfomed.
p53 induces transcriptional and translational programs to suppress cell proliferation and growth.
No sample metadata fields
View SamplesWe applied in parallel RNA-Seq and Ribosome-profiling analyses to immortalized human primary BJ fibroblast cells in which p53 was induced by Nutlin-3a Overall design: RNA-seq, using Illumina HiSeq 2000, was applied to BJ cells treated with Nutlin-3a, at 5 timepoints: 0, 2, 4, 6, 19 hrs Ribosome profiling was applied to BJ cells treated with Nutlin-3a, at 5 timepoints: 0, 2, 4, 6, 19 hrs
p53 induces transcriptional and translational programs to suppress cell proliferation and growth.
No sample metadata fields
View SamplesTo determine characterize human B cells that express IL-10 on a molecular level, we compared the global gene expression of primary CD19pos B cells secreting IL-10 or not, upon activation with anti-CD40, IL-4 and CpG for 2 days.
Autocrine IL-10 promotes human B-cell differentiation into IgM- or IgG-secreting plasmablasts.
Specimen part
View Samples