Alveolar epithelial type II (ATII)-like cells can be generated from murine embryonic stem cells (ESCs), although to date, no robust protocols applying specific differentiation factors are established. We hypothesized that the keratinocyte growth factor (KGF), an important mediator of lung organogenesis and primary ATII cell maturation and proliferation, together with dexamethasone, 8-bromoadenosine-cAMP, and isobutylmethylxanthine (DCI), which induce maturation of primary fetal ATII cells, also support the alveolar differentiation of murine ESCs. Here we demonstrate that the above stimuli synergistically potentiate the alveolar differentiation of ESCs as indicated by increased expression of the surfactant proteins (SP-) C and SP-B. This effect is most profound if KGF is supplied not only in the late stage, but at least also during the intermediate stage of differentiation. Our results indicate that KGF most likely does not enhance the generation of (mes)endodermal or NK2 homeobox 1 (Nkx2.1) expressing progenitor cells but rather, supported by DCI, accelerates further differentiation/maturation of respiratory progeny in the intermediate phase and maturation/proliferation of emerging ATII cells in the late stage of differentiation. Ultrastructural analyses confirmed the presence of ATII-like cells with intracellular composite and lamellar bodies. Finally, induced pluripotent stem cells (iPSCs) were generated from transgenic mice with ATII cell-specific lacZ reporter expression. Again, KGF and DCI synergistically increased SP-C and SP-B expression in iPSC cultures, and lacZ expressing ATII-like cells developed. In conclusion, ATII cell-specific reporter expression enabled the first reliable proof for the generation of murine iPSC-derived ATII cells. In addition, we have shown KGF and DCI to synergistically support the generation of ATII-like cells from ESCs and iPSCs. Combined application of these factors will facilitate more efficient generation of stem cell-derived ATII cells for future basic research and potential therapeutic application.
Keratinocyte growth factor and dexamethasone plus elevated cAMP levels synergistically support pluripotent stem cell differentiation into alveolar epithelial type II cells.
Specimen part, Treatment
View SamplesBoar taint (BT) is an offensive odour or taste observed in pork from a proportion of non-castrated male pigs. Surgical castration is effective in avoiding BT, but animal welfare issues have created an incentive for alternatives such as genomic selection. In order to find candidate biomarkers, gene expression profiles were analysed from tissues of non-castrated pigs grouped by their genetic merit of BT. Differential expression analysis revealed substantial changes with log-transformed fold changes of liver and testis from -3.39 to 2.96 and -7.51 to 3.53, respectively. Co-expression network analysis revealed one module with a correlation of -0.27 in liver and three modules with correlations of 0.31, -0.44 and -0.49 in testis. Differential expression and co-expression analysis revealed candidate biomarkers with varying biological functions: phase I (COQ3, COX6C, CYP2J2, CYP2B6, ACOX2) and phase II metabolism (GSTO1, GSR, FMO3) of skatole and androstenone in liver to steroidgenesis (HSD17B7, HSD17B8, CYP27A1), regulation of steroidgenesis (STARD10, CYB5R3) and GnRH signalling (MAPK3, MAP2K2, MAP3K2) in testis. Overrepresented pathways included “Ribosome”, “Protein export” and “Oxidative phosphorylation” in liver and “Steroid hormone biosynthesis” and “Gap junction” in testis. Future work should evaluate the biomarkers in large populations to ensure their usefulness in genomic selection programs. Overall design: Total RNA was extracted from liver and testis of 48 Danish Landrace pigs with low- medium and high genetic merit of boar taint and sequenced by Illumina HiSeq 2500.
Systems genomics study reveals expression quantitative trait loci, regulator genes and pathways associated with boar taint in pigs.
Specimen part, Subject
View SamplesNumerous studies have established a critical role for BMP signaling in skeletal development. In the developing axial skeleton, sequential SHH and BMP signals are required for specification of a chondrogenic fate in somitic tissue. A similar paradigm is thought to operate in the limb, but the signals involved are unclear. To investigate the nature of these signals we examined BMP action in mesenchymal populations derived from the early murine limb bud (~ E10.5). These populations exhibited a graded response to BMPs, in which early limb mesenchymal (EL) cells (from the distal hind limb) displayed an anti-chondrogenic response, whereas BMPs promoted chondrogenesis in older cell populations. To better understand the molecular basis of disparate BMP action in these various populations, gene expression profiling with Affymetrix microarrays was employed to identify BMP-regulated genes. These analyses showed that BMPs induced a distinct gene expression pattern in the EL cultures versus later mesenchymal limb populations (IM and LT).
Regulation of BMP-dependent chondrogenesis in early limb mesenchyme by TGFbeta signals.
Specimen part
View SamplesRift Valley Fever Virus (RVFV), a negative-stranded RNA virus, is the etiological agent of the vector-borne zoonotic disease, Rift Valley Fever (RVF). In both humans and livestock, protective immunity can be achieved through vaccination. Earlier and more recent vaccine trials in cattle and sheep demonstrated a strong neutralizing antibody and total IgG response induced by the RVFV vaccine, MP-12. From previous work, protective immunity in sheep and cattle vaccinates normally occurs from 7 to 21 days after inoculation with MP-12. While the serology and protective response induced by MP-12 has been studied, little attention has been paid to the underlying molecular and genetic events occurring prior to the serologic immune response. To address this, we isolated RNA from whole blood from vaccinates over a time course of 21 days before and after inoculation during a recent vaccine trial with MP-12. This RNA time course was deeply sequenced by RNASeq and bioinformatically analyzed. Our results revealed time-dependent activation or repression of numerous gene ontologies and pathways related to immune response and regulation. Additional analyses identified a correlative relationship between specific genes related to immune activity and protective immunity prior to serologic detection of antibody response. These data provide an important proof of concept for identifying molecular and genetic components underlying the immune response to vaccination and protection prior to serologic detection. Overall design: Experimental Animals: Healthy, 4 – 6 month old Bos taurus heifer and steer calves were used in the present study. The calves were seronegative to both bovine viral diarrhea and bovine leukemia virus by antigen capture enzyme-linked immunosorbent assay (ELISA) analyses done at the Texas Veterinary Medical Diagnostic Laboratory, College Station, Texas and had no detectable neutralizing antibodies to RVFV by PRNT80 at the time of vaccination. The animal experiments were performed under an Institutional Animal Care and Use Committee approved protocol #2010-192. Vaccines: The authentic recombinant MP-12 (MP12) is an attenuated RVFV vaccine prepared for use in humans by the U. S. Army Medical Research Institute of Infectious Diseases. Vaccines were propagated and prepared at University of Texas Medical Branch in Galveston, TX. Experimental Design: The calves were housed in an ABSL2 Ag biocontainment facility where they were randomized into test groups and acclimated to the facility for 14 days. Animals were inoculated either subcutaneously (s.c.) or intramuscularly (i.m.) with 1x105 PFU of MP-12 (3 animals in each group). Whole blood was collected prior to inoculation on Days 0 through 7, 10, 14, 21 and preserved for serum neutralization studies (PRNT) or total RNA purification for RNASeq analysis. Experimentally determined PRNT values were used to determine the “serologic response status” for animals “unvaccinated”, “vaccinated, not protected”, or “vaccinated, protected” with animals having a serum dilution ration of >1:80 being considered protected. Only RNA samples that met the minimum quality and quantity thresholds were used for the sequencing analysis. Rectal temperatures were recorded each time blood was collected and their health status was documented daily. At the end of the respective studies, the calves were euthanized with pentobarbital sodium (120 mg/kg i.v.). All calves were healthy and clinically normal at the termination of the respective studies. Morrill, John C., Richard C. Laughlin, Nandadeva Lokugamage, Jing Wu, Roberta Pugh, Pooja Kanani, L. Garry Adams, Shinji Makino, C. J. Peters. Immunogenicity of a Recombinant Rift Valley Fever MP-12 Vaccine Candidate in Calves. Vaccine. 2013. doi:10.1016/j.vaccine.2013.08.003. 238. Morrill, John C., Richard C. Laughlin, Nandadeva Lokugamage, Roberta Pugh, Elena Sbrana, William J. Weise, L. Garry Adams, Shinji Makino and C. J. Peters.. Safety and Immunogenicity of Recombinant Rift Valley Fever MP-12 Vaccine Candidates in Sheep. Vaccine 10.1016/j.vaccine.2012.10.118, 2012.
Correlative Gene Expression to Protective Seroconversion in Rift Valley Fever Vaccinates.
Specimen part, Subject, Time
View SamplesWe characterize the gene expression changes which occur in the mouse glomerular podocyte, mesangial, and endothelial cells between control mice and mutant mice which are missing two copies of Fyn-proto oncogene (Fyn) and one copy of CD2-associated protein (CD2AP) in a mouse model of FSGS. Overall design: The glomeruli are purified by digestion with Collagenase A and sieving, a single cell suspension is generated via enzymatic dissociation; the single cell suspension is then FACS sorted based on GFP-fluorescence (targeting the glomerular endothelial, mesangial, and podocyte cells). Total RNA was purified using a column-based system. RNA was then quantitatively and qualitatively analyzed using an agilent bioanalynzer, cDNA libraries were generated using Nugen Ovation RNA-Seq V2, and the resulting libraries were ran on an Illumina HiSeq 2500. Data was analyzed using Strand NGS version 2.6.
A bigenic mouse model of FSGS reveals perturbed pathways in podocytes, mesangial cells and endothelial cells.
Specimen part, Subject
View SamplesWe hypothesize that the observed differences in incidences of pleural and peritoneal malignant mesothelioma (MM) are the result of differences in the direct response of these cell types to asbestos rather than to differences mediated by the in vivo microenvironment. To test this hypothesis, we characterized cellular responses to asbestos in a controlled environment using high-throughput RNA sequence and other assays. Overall design: Examination of asbestos-treated versus untreated mesothelial cells from four cell lines representing two tissue types in culture.
Differential Susceptibility of Human Pleural and Peritoneal Mesothelial Cells to Asbestos Exposure.
No sample metadata fields
View SamplesWe generated whole genome expression profiles from a homogeneous population of purified pacemaker neurons (ventral Lateral Neurons, LNvs) from wild type and clock mutant Drosophila. The study identifes a group of genes whose expression is highly enriched in LNvs compared to other neurons; and a second group of genes rhythmically expressed in LNvs in a clock-dependent manner.
A mechanism for circadian control of pacemaker neuron excitability.
Specimen part
View SamplesInterleukin (IL)-17 plays an important and protective role in host defence and has been demonstrated to orchestrate airway inflammation by cooperating with and inducing proinflammatory cytokines. Mircoarrays were used to identify immediate-early/ primary response IL-17A-dependent gene transcripts in primary human bronchial ASM cells from mild asthmatic and healthy individuals.
IL-17A mediates a selective gene expression profile in asthmatic human airway smooth muscle cells.
Sex, Age, Specimen part, Treatment, Subject, Time
View SamplesThe Hox complex consists of 39 genes arranged in 4 clusters of flanking genes and 13 paralogous groups in mammals. To assess the functional redundancy of Hox abdominal-B genes during renal development, we used a modified recombineering strategy to simultaneous introduce frameshift mutations into the Hox9, Hox10, and Hox11 flanking genes of the HoxA, HoxC, and HoxD paralogous groups. We performed RNA seq on whole kidneys at E18.5 in triplicates for representative genotypes including: wild type; Hoxa9,10,11-/- HoxC9,10,11+/-, Hoxa9,10,11+/- HoxC9,10,11-/-, Hoxa9,10,11-/- HoxC9,10,11-/-. Our results suggest that the loss of Hox function results in a partial metanephric to mesonephric transformation, with tubules co-expressing markers of both proximal tubules and collecting ducts, as well as markers of mesonephric-derived epididymis tubules. Overall design: mRNA profiles were generated by performing RNA-seq on whole kidneys at E18.5 in triplicates for Hox mutant genotypes including: 1) wild type; 2) Hoxa9,10,11-/- HoxC9,10,11+/-, 3) Hoxa9,10,11+/- HoxC9,10,11-/-, and 4) Hoxa9,10,11-/- HoxC9,10,11-/- by deep sequencing using Illumina Hi-Seq 2500
Disruption of Hox9,10,11 function results in cellular level lineage infidelity in the kidney.
Specimen part, Cell line, Subject
View SamplesThis study aimed to understand the transcriptional networks regulating endoderm specification from HESC and therefore explored the phenotype of CA1 and CA2 HESC constitutively over-expressing SOX7 or SOX17. Cell lines were created using an inducible construct whereby clonal populations containing transgene integration are selected by Neomycin resistance without expressing of the gene of interest (NoCre controls). Transgene expression is induced via Cre-mediated recombination and selected for puromycin resistance (SOX O/E). The phenotype of the resulting cells suggests that SOX7 expressing HESC represent stable extraembryonic endoderm progenitors, while SOX17 expressing HESC represent early definitive endoderm progenitors. Both in vitro and in vivo SOX7 expressing HESC are restricted to the extraembryonic endoderm lineage, while SOX17 expressing HESC demonstrate mesendodermal specificity. In vitro, SOX17 expressing HESC efficiently produce mature definitive endoderm derivatives.
Establishment of endoderm progenitors by SOX transcription factor expression in human embryonic stem cells.
No sample metadata fields
View Samples