Background: Weaning of beef calves is a necessary husbandry practice and involves separating the calf from its mother, resulting in numerous stressful events including dietary change, social reorganisation and the cessation of the maternal-offspring bond and is often accompanied by housing. While much recent research has focused on the physiological response of the bovine immune system to stress in recent years, little is known about the molecular mechanisms modulating the immune response. Therefore, the objective of this study was to provide new insights into the molecular mechanisms underlying the physiological response to weaning at housing in beef calves using Illumina RNA-seq. Results: The leukocyte transcriptome was significantly altered for at least 7 days following either housing or weaning at housing. Analysis of differentially expressed genes revealed that four main pathways, cytokine signalling, transmembrane transport, haemostasis and G-protein-coupled receptor (GPRC) signalling, were differentially regulated between control and weaned calves and underwent significant transcriptomic alterations in response to weaning stress on day 1, 2 and 7. Of particular note, chemokines, cytokines and integrins were consistently found to be up-regulated on each day following weaning. Evidence for alternative splicing of genes was also detected, indicating that a number of genes involved in the innate and adaptive immune response may be alternatively transcribed, including those responsible for toll receptor cascades and T cell receptor signalling. Conclusions: This study represents the first application of RNA-Seq technology for genomic studies in bovine leukocytes in response to weaning stress. Weaning stress induces the activation of a number of cytokine, chemokine and integrin transcripts and may alter the immune system whereby the ability of a number of cells of the innate and adaptive immune system to locate and destroy pathogens is transcriptionally enhanced. Stress alters the homeostasis of the transcriptomic environment of leukocytes for at least 7 days following weaning, indicating long-term effects of stress exposure in the bovine. The identification of gene signature networks that are stress activated provides a mechanistic framework to characterise the multifaceted nature of weaning stress adaptation in beef calves. Thus, capturing subtle transcriptomic changes provides insight into the molecular mechanisms that underlie the physiological response to weaning stress. Overall design: Examination of a time course (day 0, 1, 2 and 7) for 2 treatments, calves either housed with their dam (control) or housed and simultaneously weaned, using RNA-seq. The supplementary processed data file 'read_counts.txt' contains unnormalized read counts for each Ensembl bovine gene in each of the 48 samples. Unnormalized counts are required for input to EdgeR. Genome build: Btau4.0
Transcriptomic analysis of the stress response to weaning at housing in bovine leukocytes using RNA-seq technology.
Specimen part, Disease, Treatment, Subject
View SamplesMicroarrays were used to detail the global program of gene expression underlying differences in the organisation of inflammatory cells classified by the expression of the CD21L and IL-17A genes. Synovia were defined by the expression of the CD21L and IL-17A genes as determined by semi-quantitative PCR.
Co-expression of CD21L and IL17A defines a subset of rheumatoid synovia, characterised by large lymphoid aggregates and high inflammation.
Specimen part, Disease, Disease stage, Subject
View SamplesThe double-stranded RNA binding protein Staufen2 (Stau2) is asymmetrically localized and segregated during asymmetric cell divisions in the developing mouse cortex and promotes intermediate progenitor cell fate.
Asymmetric segregation of the double-stranded RNA binding protein Staufen2 during mammalian neural stem cell divisions promotes lineage progression.
Specimen part
View SamplesIn addition to gaining knowledge on in vivo miRNA responses to formaldehyde, we set out to relate these miRNA responses to transcriptional profiles modified by formaldehyde. Rats were exposed by inhalation to either 0 or 2 ppm formaldehyde (6 hours/day) for 28 days. Genome-wide transcriptional profiles and associated signaling pathways were assessed within the nasal respiratory mucosa and circulating mononuclear white blood cells (WBC).
Formaldehyde-associated changes in microRNAs: tissue and temporal specificity in the rat nose, white blood cells, and bone marrow.
Sex, Specimen part, Treatment, Time
View SamplesAlthough type III interferons (IFN), also known as IFN-? or IL28/IL-29, restrict infection by several viruses, their mechanism of inhibitory action has remained uncertain. We used recombinant IFN-? and mice lacking the IFN-? receptor (IFNLR1) to evaluate the effect of IFN-? on infection with West Nile virus (WNV), an encephalitic flavivirus. Cell culture studies in keratinocytes and dendritic cells showed no direct antiviral effect of exogenous IFN-? even though ISGs were induced. Correspondingly, we observed no differences in WNV burden between wild-type and Ifnlr1-/- mice in the draining lymph node, spleen, and blood. However, we detected earlier dissemination and increased WNV infection in the brain and spinal cord of Ifnlr1-/- mice, yet this was not associated with a direct antiviral effect on infection of neurons. Instead, an increase in blood-brain barrier (BBB) permeability was observed in Ifnlr1-/- mice. Accordingly, treatment of mice with pegylated IFN-?2 resulted in decreased BBB permeability, reduced WNV infection in the brain without impacting viremia, and improved survival against lethal virus challenge. An in vitro model of the BBB showed that IFN-? signaling in brain microvascular endothelial cells increased transendothelial electrical resistance, decreased virus movement across the barrier, and modulated tight junction protein localization in a protein synthesis- and STAT1-independent manner. Our data establish a novel indirect antiviral function of IFN-? in which non-canonical signaling through IFNLR1 tightens the BBB and restricts viral neuroinvasion and pathogenesis. This finding suggests new clinical applications for IFN-? in treating viral or autoimmune diseases. Overall design: Transcriptome profiling of bone-marrow derived Dendritic cells(BMDCs), treated with either Serum Free Media(Mock), interferon beta(IFNb), or interferon lambda(IFNL) for 6 hours.
Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier.
No sample metadata fields
View SamplesAnalysis of interferon-stimulated genes (ISGs) in various primary cells and immortalized cell lines, following type 1 interferon (IFN) treatment. Some cell types become resistant to HIV-1 infection following type 1 interferon treatment (such as macrophages, THP-1, PMA-THP-1, U87-MG cells and to a lesser extent, primary CD4+ T cells) while others either become only partially resistant (e.g., HT1080, PMA-U937) or remain permissive (e.g., CEM, CEM-SS, Jurkat T cell lines and U937); for more information see (Goujon and Malim, Journal of Virology 2010) and (Goujon and Schaller et al., Retrovirology 2013). We hypothesized that the anti-HIV-1 ISGs are differentially induced and expressed in restrictive cells compared to permissive cells and performed a whole genome analysis following type 1 IFN treatment in cell types exhibiting different HIV-1 resistance phenotypes.
Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection.
Cell line, Treatment, Subject
View SamplesThe human neocortex is created from diverse progenitors that are intermixed with multiple cell types in the prenatal germinal zones. These progenitors have been difficult to profile with unbiased transcriptomics since progenitors-particularly radial glia (RG)-are rare cell types, defined by a combination of intracellular markers, position and morphology. To circumvent these problems, we developed a method called FRSCR for transcriptome profiling of individual fixed, stained, and sorted cells. After validation of FRSCR with human embryonic stem cells, we profiled primary human RG that constitute only 1% of the mid-gestation cortex. These data showed that RG could be classified into ventricle zone-enriched RG (vRG) that expressed ANXA1 and CRYAB, and outer subventricular zone-localized RG (oRG) that expressed HOPX. Our study identified the first markers and molecular profiles of vRG and oRG cells, and provides an essential step for understanding molecular networks that control the development and lineage of human neocortical progenitors. Furthermore, FRSCR allows targeted single-cell transcriptomic profiling of many tissues that currently lack live-cell markers. Overall design: 26 Llive and 19 Fixed cultured hESCs were prepared and sequenced using both FRISCR and TritonX-100 Lysis as proof of principal for FRSCR.
Fixed single-cell transcriptomic characterization of human radial glial diversity.
No sample metadata fields
View SamplesA gene expression signature purporting to distinguish between telomerase and ALT immortalization has recently been described (Lafferty-Whyte et al., 2009). This was obtained as the intersection of two independent signatures, one obtained from cell lines and the other from a panel of liposarcomas, which utilize different telomere maintenance mechanisms (TMMs). To assess the utility of this signature we used Affymetrix U133plus2.0 arrays to undertake a similar analysis of an independent collection of liposarcomas of defined TMM. In our dataset, the 297 gene signature causes the liposarcomas to cluster not on the basis of TMM, but rather on the basis of tumor histological subtype [Figure 1], consistent with the signatures reported by others (Matushansky et al., 2008).
Validating a gene expression signature proposed to differentiate liposarcomas that use different telomere maintenance mechanisms.
No sample metadata fields
View SamplesComparative analysis can provide important insights into complex biological systems. As demonstrated in the accompanying paper, Translating Ribosome Affinity Purification (TRAP), permits comprehensive studies of translated mRNAs in genetically defined cell populations following physiological perturbations.
Application of a translational profiling approach for the comparative analysis of CNS cell types.
No sample metadata fields
View SamplesBackground: microRNAs (miRNAs) are approximately 21 nucleotide non-coding transcripts capable of regulating gene expression. The most widely studied mechanism of regulation involves binding of the miRNA to a target mRNA, usually in its 3 untranslated region (UTR). As a result, translation of the target mRNA is inhibited and sometimes the mRNA itself can be de-stabilized. The inhibitory effects of miRNAs have been linked to many diverse cellular processes including malignant proliferation and apoptosis, development and differentiation, metabolic processes and neural plasticity. We asked whether endogenous fluctuations in a set of mRNA and miRNA profiles contain correlated changes that are statistically distinguishable from the many other fluctuations in the data set.
Detection of a microRNA signal in an in vivo expression set of mRNAs.
No sample metadata fields
View Samples