Erlotinib is a tyrosine kinase inhibitor (TKI) that is approved as a second-line monotherapy in patients with advanced non-small cell lung cancer (NSCLC). In these patients, erlotinib prolongs survival but its benefit remains modest since many tumors express wild-type EGF receptor (wtEGFR) lacking a TKI-sensitizing mutation, develop a second-site EGFR mutation, e.g., EGFR-L858R/T790M, or activate an alternate receptor tyrosine kinase, e.g., through MET amplification. To test potential drug combinations that could improve the efficacy of erlotinib, we combined erlotinib with quinacrine, which inhibits the FACT (facilitates chromatin transcription) complex that is required for nuclear factor-B (NF-B) transcriptional activity. In A549 (wtEGFR), H1975 (EGFR-L858R/T790M) and H1993 (MET amplification) NSCLC cells, the combination of erlotinib and quinacrine was highly synergistic, as quantified by Chou-Talalay combination indices. The combination inhibited colony formation, induced cell cycle arrest and apoptosis, and slowed xenograft tumor growth. Quinacrine decreased the level of active FACT subunit SSRP1 and suppressed NF-B-dependent luciferase activity. Knockdown of SSRP1 decreased cell growth and sensitized cells to erlotinib.
Quinacrine overcomes resistance to erlotinib by inhibiting FACT, NF-κB, and cell-cycle progression in non-small cell lung cancer.
Cell line, Treatment
View SamplesProtein inhibitor of activated STAT3 (PIAS3) is an endogenous inhibitor of STAT3 that negatively regulates STAT3 transcriptional activity and cell growth and demonstrates limited expression in the majority of human squamous cell carcinomas of the lung. In the present study we sought to determine if PIAS3 inhibits cell growth in non-small cell lung cancer (NSCLC) cell lines by induction of apoptosis and further determine the dependence of PIAS3 activity on p53 status by using both wild-type and p53-null cells. Our results demonstrate that over-expression of PIAS3 promotes caspase 3 activation and PARP cleavage. Furthermore, the expression of pro-survival family members Bcl-xL and Bcl-2 is decreased. These effects were observed after both transient and regulated expression of exogenous PIAS3 and were independent of p53 status. Furthermore, while p53 can promote apoptosis by inhibition of STAT3 activity, PIAS3 inhibition of STAT3 activity was also p53 independent. Microarray experiments were performed to further investigate the STAT3-dependence of PIAS3-induced apoptosis by comparing the apoptotic gene expression signature induced by PIAS3 over-expression with that induced by STAT3 siRNA. The results showed that a subset of apoptotic genes, including CIDEC and DAPK2, were uniquely expressed only after PIAS3 expression. Thus, PIAS3 may represent a promising lung cancer therapeutic target because of its p53-independent efficacy as well as its potential to synergize with direct STAT3 inhibitors.
PIAS3 activates the intrinsic apoptotic pathway in non-small cell lung cancer cells independent of p53 status.
Specimen part, Cell line
View SamplesEye development and photoreceptor maintenance requires the retinal pigment epithelium (RPE), a thin layer of cells that underlies the neural retina. Despite its importance, RPE development has not been studied by a genomic approach. A microarray expression profiling methodology was established in this study for studying RPE development. The intact retina with RPE attached was dissected from developing embryos, and differentially expressed genes in RPE were inferred by comparing the dissected tissues with retinas without RPE using microarray and statistical analyses. We found 8810 probesets to be significantly expressed in RPE at 52 hours post-fertilization (hpf), of which 1443 might have biologically meaningful expression levels. Further, 78 and 988 probesets were found to be significantly over- or under-expressed in RPE respectively compared to retina. Also, 79.2% (38/48) of the known over-expressed probesets have been independently validated as RPE-related transcripts. The results strongly suggest that this methodology can obtain in vivo RPE specific gene expression from the zebrafish embryos and identify novel RPE markers.
Gene expression profiling of zebrafish embryonic retinal pigment epithelium in vivo.
Specimen part
View SamplesFive different mitochondrial strains were introgressed in male and female fruit flies with identical (w1118) nuclear genetic background.
Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution.
Sex
View SamplesRetinal cells are specified in a zebrafish recessive mutant called young (yng) but they fail to terminally differentiate; i.e. extend neurites and make synaptic contacts. A point mutation in a brahma-related gene 1 (brg1) is responsible for this phenotype. In this microarray study, a three-factor factorial design was utilized to investigate the effects of 1) mutation, 2) change in time (36 vs. 52hpf), and 3) change in tissue (retina vs. whole embryos), and their interactions on gene expression. Significant probesets were inferred by using both specific contrasts of the fitted Analysis of Variance (ANOVA) models and a corresponding 2-fold expression cutoff. The probesets were grouped into three broad categories: 1) Brg1-regulated retinal differentiation genes (731 probsets), 2) Retinal specific genes but independent of Brg1 regulation (3038 probesets) and 3) Genes regulated by Brg1 but outside the retina (107 probesets). Four gene groups/pathways including neurite outgrowth regulators, Delta-Notch signalling molecules, Irx family members and specific cell cycle regulators were identified in the first group, and their relevance for retinal differentiation functionally validated. This study demonstrates that an approach such as ours can identify relevant genes and pathways involved in retinal development as well as the development of other tissues at the same time.
Factorial microarray analysis of zebrafish retinal development.
Specimen part
View SamplesSleep deprivation (SD) in young adults is associated with metabolic, stress and cognitive responses that are also characteristic of brain aging. Given that sleep architecture changes with age, including increased fragmentation and decreased slow wave activity, it seems reasonable to investigate potential molecular relationships between SD and aging in brain tissue. Here, we tested the hypothesis that young rats exposed to 24 or 72 hour SD would respond with stress and aging-like shifts in brain hippocampal CA1 gene expression. SD animals showed blood corticosterone and weight changes consistent with a stress response. Microarray results, validated by Western blot and comparison to prior SD studies, pointed to disruptions in neurotransmission, sleep pressure signaling, and macromolecular synthesis. In a separate experiment, animals exposed to 24 or 72 hour novel environment stress recapitulated nearly one third of the SD transcriptional profile, particularly upregulated apoptotic and immune signaling pathways. Compared to aging (based on three previously published independent hippocampal aging studies), SD transcriptional profiles agreed for neurogenesis and energy pathways. However, immune signaling, glial activity, macromolecular synthesis and neuronal function all showed an SD profile that was, at least in part, opposed by aging. We conclude that while stress and SD have discrete molecular signatures, they do show a subset of highly similar changes. However, the same could not be said of aging and SD, where a similar subset of genes is changed, but in partially divergent directions. Finally, this work identifies presynaptic vesicular release and intercellular adhesion molecular signatures as novel targets for future SD-countering therapeutics.
Hippocampal CA1 transcriptional profile of sleep deprivation: relation to aging and stress.
Sex, Treatment
View SamplesSiponimod selectively enriched regulatory T and B lymphocytes in active secondary progressive multiple sclerosis patients: 20 SPMS baseline including 3 repeats, 19 treated with 5 placebo and 14 siponimod treated.
Siponimod enriches regulatory T and B lymphocytes in secondary progressive multiple sclerosis.
Sex, Age, Treatment
View SamplesMetabolic, mitochondrial and behavioral correlations with transcriptional profiles from the CA1 and DG hippocampal regions of young and aged rhesus macaque. Increasing evidence indicates that obesity correlates with impaired cognitive performance during normal aging and is a major risk factor for Alzheimers disease. However, little is known regarding how peripheral metabolic variables affect cellular pathways in brain regions important for memory. Brain inflammation, mitochondrial dysregulation, and altered transcriptional regulation have all been found to occur with aging, and recent microarray analyses in rodent models have linked these processes and others to age-related memory impairment. However, whether these brain changes are also associated with metabolic variables is not known. Aging monkeys exhibit several metabolic changes similar to those seen in humans. Here, we tested peripheral-brain relationships in six young (7.0 +/- 0.3 years) and six aged (23.5 +/- 0.7 years) female rhesus monkeys. Animal cognition was gauged with a variable delay task; blood constituents were assessed with a serum chemistry panel emphasizing markers of metabolic dysfunction; mitochondrial function was measured from the hippocampus of one hemisphere; and the CA1 and dentate gyrus regions of the other hippocampus were dissected out for gene expression microarray analysis. Aged animals showed reduced performance on the behavioral task, exhibited aspects of metabolic dysregulation including increased insulin, triglyceride, and chylomicron levels (consolidated into a peripheral metabolic index), and showed a significant age-related reduction in State III oxidation, a measure of mitochondrial function. Microarray analyses revealed hundreds of genes that correlated with the peripheral metabolic index. However, DAVID statistical pathway analyses showed that upregulated inflammatory genes in CA1 and downregulated transcriptional regulation genes in dentate gyrus and CA1 were particularly overrepresented among genes correlated with the peripheral index. Thus, the association of metabolic variables with specific neuropathological processes in different regions of the hippocampal formation may have implications for mechanisms through which peripheral metabolism alters the risk for Alzheimers disease.
Aging-related gene expression in hippocampus proper compared with dentate gyrus is selectively associated with metabolic syndrome variables in rhesus monkeys.
No sample metadata fields
View SamplesQuiescent stem cells are periodically activated to maintain tissue homeostasis or occasionally called into action upon injury. Molecular mechanisms that constitutively maintain stem cell identity or promote stem cell proliferation and differentiation upon activation have been extensively studied. However, it is unclear how quiescent stem cells maintain identity and reinforce quiescence when they transition from quiescence to activation. Here we show mouse hair follicle stem cell compartment induces a transcription factor, Foxc1, when activated. Importantly, deletion of Foxc1 in the activated but not quiescent stem cells compromises stem cell identity, fails to re-establish quiescence and subsequently drives premature stem cell activation.These findings uncover a dynamic, cell-intrinsic mechanism employed by hair follicle stem cells to reinforce stemness in response to activation. Overall design: Poly(A)-enriched transcriptome RNA-seq on HFSCs isolated in WT and K14Cre cKO mice at anagen and early telogen stage of hair cycle.
Foxc1 reinforces quiescence in self-renewing hair follicle stem cells.
No sample metadata fields
View SamplesTREM-1 is an orphan immunoreceptor expressed on monocytes, macrophages, and neutrophils. TREM-1 associates with and signals via the adapter protein DAP12/TYROBP, which contains an immunoreceptor tyrosine-based activation motif (ITAM). TREM-1 activation by receptor cross-linking is pro-inflammatory, and can amplify cellular responses to Toll-like receptor (TLR) ligands such as bacterial lipopolysaccharide (LPS). To investigate the cellular consequences of TREM-1 activation, we have characterized global gene expression changes in human monocytes in response to TREM-1 cross-linking in comparison to and combined with LPS. Both TREM-1 activation and LPS up-regulate chemokines, cytokines, matrix metalloproteases, and PTGS/COX2, consistent with a core inflammatory response. However, other immunomodulatory factors are selectively induced, including SPP1 and CSF1 (i.e., M-CSF) by TREM-1 activation and IL-23 and CSF3 (i.e., G-CSF) by LPS. Additionally, cross-talk between TREM-1 activation and LPS occurs on multiple levels. While synergy in GM-CSF protein production is reflected in commensurate mRNA abundance, comparable synergy in IL-1b protein production is not. TREM-1 activation also attenuates the induction of some LPS target genes, including those that encode IL-12 cytokine family subunits. Whereas positive TREM-1 outputs are abolished by the PI3K inhibitor wortmannin, this attenuation is largely PI3K-independent. These experiments provide a detailed analysis of the cellular consequences of TREM-1 activation, and highlight some of the complexity in signal integration between ITAM- and TLR-mediated signaling.
Innate immune responses to TREM-1 activation: overlap, divergence, and positive and negative cross-talk with bacterial lipopolysaccharide.
No sample metadata fields
View Samples