refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 411 results
Sort by

Filters

Technology

Platform

accession-icon SRP018547
Competition between pre-mRNAs for a limiting splicing machinery drives global changes in splicing
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 47 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

During meiosis in yeast, global splicing efficiency increases. The mechanism for this is relief of competition for the splicing machinery by repression of intron-containing ribosomal protein genes (RPGs). Repression of RPGs with rapamycin also increases splicing efficiency in vegetative cells. Reducing levels of an RPG-dedicated transcription factor globally improves splicing and suppresses the temperature-sensitive growth defect of a spliceosome mutation. These results indicate that the spliceosome is limiting and pre-mRNAs compete with each other. Under these conditions, splicing efficiency of a given pre-mRNA therefore depends on both its concentration and affinity for the limiting splicing factor(s) as well as those of the competing pre-mRNAs. We propose that trans-competition control of splicing helps repress meiotic gene expression in vegetative cells, and promotes efficient meiosis. Competition between RNAs for a limiting factor may be a general condition important for function of a variety of post-transcriptional control mechanisms. Overall design: Splicing and gene expression profiles of 1) wild type yeast cells treated with rapamycin (2 biological replicates) relative to untreated cells and 2) prp4-1 pGAL-IFH1 (down-regulated expression of IFH1 transcription factor(specific for ribosomal protein genes)) relative to prp4-1 yeast.

Publication Title

Competition between pre-mRNAs for the splicing machinery drives global regulation of splicing.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon SRP016518
The expression analyses of metafemales compared with normal females
  • organism-icon Drosophila melanogaster
  • sample-icon 43 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

Comapare the global expression of metafemales and normal femalems Overall design: Collected the metafemales, females and males and made RNA-seq

Publication Title

Dosage compensation and inverse effects in triple X metafemales of Drosophila.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon SRP149377
ADAR1-editing in HeLa, p150-KO and ADAR1-KO transcriptomes
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

RNAseq analysis of cell lines with ADAR1-p150 and ADAR1-p110 knock-outs and primary human tissue samples (from GSE57353 and GSE99392 data sets) to identify sites of ADAR1 editing Overall design: 12 samples: 3 cell lines (HeLa, HeLa-p150KO, HeLa-ADAR1KO) with four conditions each (no treatment, MeV-vac2(GFP)-infected, MeV-CKO(GFP)-infected, IFNA/D-treated). One biological replicate per sample. In addition, raw data files of 9 samples from series GSE57353 and GSE99392 were re-analyzed using the same data processing pipeline.

Publication Title

Extensive editing of cellular and viral double-stranded RNA structures accounts for innate immunity suppression and the proviral activity of ADAR1p150.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP005860
Disrupted processing of long pre-mRNAs and widespread RNA missplicing are components of neuronal vulnerability from loss of nuclear TDP-43 (RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Cross-linking and immunoprecipitation coupled with high-throughput sequencing was used to identify binding sites within 6,304 genes as the brain RNA targets for TDP-43, an RNA binding protein which when mutated causes Amyotrophic Lateral Sclerosis (ALS). Use of massively parallel sequencing and splicing-sensitive junction arrays revealed that levels of 601 mRNAs are changed (including Fus/Tls, progranulin, and other transcripts encoding neurodegenerative disease-associated proteins) and 965 altered splicing events are detected (including in sortilin, the receptor for progranulin), following depletion of TDP-43 from adult brain with antisense oligonucleotides. RNAs whose levels are most depleted by reduction in TDP-43 are derived from genes with very long introns and which encode proteins involved in synaptic activity. Lastly, TDP-43 was found to auto-regulate its synthesis, in part by directly binding and enhancing splicing of an intron within the 3’ untranslated region of its own transcript, thereby triggering nonsense mediated RNA degradation. Overall design: RNAseq in control and Tdp-43 knockdown mouse striatum

Publication Title

Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP005859
Disrupted processing of long pre-mRNAs and widespread RNA missplicing are components of neuronal vulnerability from loss of nuclear TDP-43 (CLIP)
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Cross-linking and immunoprecipitation coupled with high-throughput sequencing was used to identify binding sites within 6,304 genes as the brain RNA targets for TDP-43, an RNA binding protein which when mutated causes Amyotrophic Lateral Sclerosis (ALS). Use of massively parallel sequencing and splicing-sensitive junction arrays revealed that levels of 601 mRNAs are changed (including Fus/Tls, progranulin, and other transcripts encoding neurodegenerative disease-associated proteins) and 965 altered splicing events are detected (including in sortilin, the receptor for progranulin), following depletion of TDP-43 from adult brain with antisense oligonucleotides. RNAs whose levels are most depleted by reduction in TDP-43 are derived from genes with very long introns and which encode proteins involved in synaptic activity. Lastly, TDP-43 was found to auto-regulate its synthesis, in part by directly binding and enhancing splicing of an intron within the 3’ untranslated region of its own transcript, thereby triggering nonsense mediated RNA degradation. Overall design: CLIP of Tdp-43 in 8 week mouse brain.

Publication Title

Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP087936
RNA binding protein CPEB1 remodels host and viral RNA landscapes [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

In this study, we report that HCMV infection results in widespread alternative splicing (AS), shorter 3'-untranslated regions (3'UTRs) and polyA tail lengthening in host genes and CPEB1 depletion reverses infection-related post-transcriptional changes. Overall design: We performed RNA-seq for Mock (Non-targeting siRNA), human Cytomegalovirus (HCMV) with non-targeting siRNA, and CPEB1 siRNA treated human foreskin fibroblasts (HFFs). We also performed RNA-seq for lentivirus mediated GFP overexpression (OE) and CPEB1 overexpression human foreskin fibroblasts. Lastly, we performed TAIL-seq for Mock (Non-targeting siRNA), human Cytomegalovirus (HCMV) with non-targeting siRNA, and CPEB1 siRNA treated HFFs.

Publication Title

RNA-binding protein CPEB1 remodels host and viral RNA landscapes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP091435
Adaptive chromatin remodeling in glioblastoma stem cell plasticity and drug tolerance
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

Many cancers are postulated to harbor developmental hierarchies in which cells display variability in stem-like character, tumor propagating ability, and proliferation. In glioblastoma (GBM), glioma stem cells (GSCs) reside atop such a tumor cellular hierarchy, and are thought to resist current therapies and thus underlie inevitable relapse. Here we show that GSCs can evade RTK inhibition by reversibly regressing to a slow-cycling state reminiscent of quiescent neural stem cells. This process involves up-regulation of numerous histone demethylases, including KDM6A/B, which remodel the chromatin landscape and are selectively essential for drug persister survival. Chromatin remodeling is accompanied by activation of various neurodevelopmental master regulators and Notch signaling, changes which closely parallel critical aspects of neural stem cell biology. Thus our findings illustrate how cancer cells may hijack native developmental programs for deranged proliferation, adaptation, and tolerance in the face of stress. Our studies highlight key roles for chromatin remodeling and developmental plasticity in GBM biology, and suggest strategies for overcoming therapeutic resistance by targeting epigenetic and developmental pathways. Overall design: ChIP-seq for histone modifications and Notch factors in glioblastoma stem cell lines with various drug treatments RNA-seq in glioblastoma stem cell lines with various drug treatments

Publication Title

Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP068025
KPC vs Wild Type Pancreatic Fibroblasts
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

These experiments aim to determine global gene expression patterns in WT vs KPC isolated pancreatic fibroblasts Overall design: WT or KPC mice were isolated from pancreas and RNA-seq was performed

Publication Title

Stromal ETS2 Regulates Chemokine Production and Immune Cell Recruitment during Acinar-to-Ductal Metaplasia.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP069789
Distinct and shared functions of ALS-associated TDP-43, FUS, and TAF15 revealed by comprehensive multi-system integrative analyses [RNA-Seq_Stability]
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

TDP-43, FUS, and TAF15 are implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We integrate CLIP-seq and RNA Bind-N-Seq technologies to discover that TAF15 binds to ~4,900 RNAs enriched for GGUA motifs. In the mouse brain, TAF15 and FUS, but not TDP-43, exhibit strikingly similar RNA binding profiles, yet they alter the expression of distinct mRNA populations upon their individual depletions. TAF15 has a minimal role in alternative splicing and instead affects RNA turnover, consistent with an enrichment of TAF15 binding sites in 3’ untranslated regions. In human stem cell-derived motor neurons, loss of both TAF15 and FUS affected mRNAs distinct from those altered by loss of either protein alone, revealing redundant roles for TAF15 and FUS in maintaining mRNA levels. Furthermore, concomitant rather than individual depletion of TAF15 and FUS more closely resembles RNA profiles of motor neurons derived from FUS R521G ALS patients or from late-stage, sporadic ALS patients. Our study reveals convergent and divergent mechanisms by which FUS, TAF15 and TDP-43 affects RNA metabolism in neurological disease. Overall design: RNA-seq, CLIP-seq and arrays in mouse and human against TAF15 knockdowns This Series represents RNA-seq sample(s).

Publication Title

Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP069787
Distinct and shared functions of ALS-associated TDP-43, FUS, and TAF15 revealed by comprehensive multi-system integrative analyses [RNA-Seq_human]
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

TDP-43, FUS, and TAF15 are implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We integrate CLIP-seq and RNA Bind-N-Seq technologies to discover that TAF15 binds to ~4,900 RNAs enriched for GGUA motifs. In the mouse brain, TAF15 and FUS, but not TDP-43, exhibit strikingly similar RNA binding profiles, yet they alter the expression of distinct mRNA populations upon their individual depletions. TAF15 has a minimal role in alternative splicing and instead affects RNA turnover, consistent with an enrichment of TAF15 binding sites in 3’ untranslated regions. In human stem cell-derived motor neurons, loss of both TAF15 and FUS affected mRNAs distinct from those altered by loss of either protein alone, revealing redundant roles for TAF15 and FUS in maintaining mRNA levels. Furthermore, concomitant rather than individual depletion of TAF15 and FUS more closely resembles RNA profiles of motor neurons derived from FUS R521G ALS patients or from late-stage, sporadic ALS patients. Our study reveals convergent and divergent mechanisms by which FUS, TAF15 and TDP-43 affects RNA metabolism in neurological disease. Overall design: RNA-seq, CLIP-seq and arrays in mouse and human against TAF15 knockdowns This Series represents RNA-seq sample(s).

Publication Title

Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact