Regulation of mRNA stability by RNA-protein interactions contributes significantly to quantitative aspects of gene expression. We have identified potential mRNA targets of the AU-rich element binding protein AUF1. Myc-tagged AUF1 p42 was induced in mouse NIH-3T3 cells and RNA-protein complexes isolated using anti-myc tag antibody beads. Bound mRNAs were analyzed with Affymetrix microarrays. We have identified 508 potential target mRNAs that were at least 3-fold enriched compared to control cells without myc-AUF1. 22.3% of the enriched mRNAs had an AU-rich cluster in the ARED Organism database, against 16.3% of non-enriched control mRNAs. The enrichment towards AU-rich elements was also visible by AREScore with an average value of 5.2 in the enriched mRNAs versus 4.2 in the control group. Yet, many mRNAs were enriched without a high ARE score suggesting that AUF1 has a broader binding spectrum than standard AUUUA repeats. AUF1 did not preferentially bind to unstable mRNAs. Still, some enriched mRNAs were highly unstable, as those of TNFSF11 (known as RANKL), KLF10, HES1, CCNT2, SMAD6, and BCL6. We have mapped some of the instability determinants. HES1 mRNA appeared to have a coding region determinant. Detailed analysis of the RANKL and BCL6 3UTR revealed for both that full instability required two elements, which are conserved in evolution. In RANKL mRNA both elements are AU-rich and separated by 30 bases, while in BCL6 mRNA one is AU-rich and 60 bases from a non AU-rich element that potentially forms a stem-loop structure.
Short-lived AUF1 p42-binding mRNAs of RANKL and BCL6 have two distinct instability elements each.
Cell line
View SamplesMolecular pathways activated in MALT lymphoma are not well defined.
Gene expression profiling of pulmonary mucosa-associated lymphoid tissue lymphoma identifies new biologic insights with potential diagnostic and therapeutic applications.
Sex
View Sampleswe report the comperative transcriptome analysis of the MMTV-TGF- a female mice thymus tissues Overall design: 3 different fed types
Transcriptome Analysis of the Thymus in Short-Term Calorie-Restricted Mice Using RNA-seq.
Specimen part, Cell line, Subject
View SamplesMalignant gliomas constitute one of the most significant areas of unmet medical need, due to the invariable failure of surgical eradication and their marked molecular heterogeneity. Accumulating evidence has revealed a critical contribution by the Polycomb axis of epigenetic repression. However, a coherent understanding of the regulatory networks affected by Polycomb during gliomagenesis is still lacking. Here we integrate transcriptomic and epigenomic analyses to define Polycomb-dependent networks that promote gliomagenesis, validating them both in two independent mouse models and in a large cohort of human samples. We found that Polycomb dysregulation in gliomagenesis affects transcriptional networks associated to invasiveness and de-differentiation. The dissection of these networks uncovers Zfp423 as a crtitical Polycomb-dependent transcription factor whose silencing negatively impacts survival. The anti-gliomagenic activity of Zfp423 requires interaction with the SMAD proteins within the BMP signaling pathway, pointing to a novel synergic circuit through which Polycomb inhibits BMP signaling. Overall design: Transcriptomic analysis of two different stages of gliomagenesis
Polycomb dysregulation in gliomagenesis targets a Zfp423-dependent differentiation network.
Specimen part, Cell line, Subject
View SamplesGastric cancers with mismatch repair (MMR) inactivation are characterised by microsatellite instability (MSI). In this study, the transcriptional profile of 38 gastric cancers with and without MSI was analysed.
Genome-wide expression profile of sporadic gastric cancers with microsatellite instability.
No sample metadata fields
View SamplesSplenic marginal zone lymphoma (SMZL) is an indolent B-cell lymphoproliferative disorder characterised by 7q32 deletion, but the target genes of this deletion remain unknown. In order to elucidate the genetic target of this deletion, we performed an integrative analysis of the genetic, epigenetic, transcriptomic and miRNomic data. High resolution array comparative genomic hybridization of 56 cases of SMZL delineated a minimally deleted region (2.8Mb) at 7q32, but showed no evidence of any cryptic homozygous deletion or recurrent breakpoint in this region. Integrative transcriptomic analysis confirmed significant under-expression of a number of genes in this region in cases of SMZL with deletion, several of which showed hypermethylation. In addition, a cluster of 8 miRNA in this region showed under-expression in cases with the deletion, and three (miR-182/96/183) were also significantly under-expressed (P <0.05) in SMZL relative to other lymphomas. Genomic sequencing of these miRNA and IRF5, a strong candidate gene, did not show any evidence of somatic mutation in SMZL.
An integrated genomic and expression analysis of 7q deletion in splenic marginal zone lymphoma.
Specimen part, Disease
View SamplesSplenic marginal zone lymphoma (SMZL) is an indolent B-cell lymphoproliferative disorder characterised by 7q32 deletion, but the target genes of this deletion remain unknown. In order to elucidate the genetic target of this deletion, we performed an integrative analysis of the genetic, epigenetic, transcriptomic and miRNomic data. High resolution array comparative genomic hybridization of 56 cases of SMZL delineated a minimally deleted region (2.8Mb) at 7q32, but showed no evidence of any cryptic homozygous deletion or recurrent breakpoint in this region. Integrative transcriptomic analysis confirmed significant under-expression of a number of genes in this region in cases of SMZL with deletion, several of which showed hypermethylation. In addition, a cluster of 8 miRNA in this region showed under-expression in cases with the deletion, and three (miR-182/96/183) were also significantly under-expressed (P <0.05) in SMZL relative to other lymphomas. Genomic sequencing of these miRNA and IRF5, a strong candidate gene, did not show any evidence of somatic mutation in SMZL.
An integrated genomic and expression analysis of 7q deletion in splenic marginal zone lymphoma.
No sample metadata fields
View SamplesThe five DLBCL cell lines were treated with R406 to assess the signature of SYK inhibition. In previous studies, R406 decreased the proliferation and induced apoptosis of these surface Ig+ cell lines. In the previous studies, R406 inhibited the autophosphorylation of SYK 525/526 and SYK-dependent phosphorylation of BCR signaling components such as BLNK.
SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas.
Specimen part, Cell line, Treatment, Time
View SamplesThe two DLBCL cell lines were treated with R406 to assess the signature of SYK inhibition. In previous studies, R406 decreased the proliferation and induced apoptosis of these surface Ig+ cell lines. In the previous studies, R406 inhibited the autophosphorylation of SYK 525/526 and SYK-dependent phosphorylation of BCR signaling components such as BLNK.
SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas.
Specimen part, Cell line, Treatment
View SamplesBACKGROUND. Poorly-differentiated (PDTC) and anaplastic (ATC) thyroid cancers are rare and frequently lethal tumors, which so far have not been subjected to comprehensive genetic characterization. METHODS. We performed next generation sequencing of 341 cancer genes in 117 PDTCs and ATCs, and a transcriptomic analysis of a representative subset of 37 tumors. Results were analyzed in the context of The Cancer Genome Atlas (TCGA) study of papillary thyroid cancers (PTC). RESULTS. ATCs have a greater mutation burden than PDTCs, and higher mutation frequency of TP53, TERT promoter, PI3K/AKT/mTOR pathway effectors, SWI/SNF subunits and histone methyltransferases. BRAF and RAS are the predominant drivers, and dictate remarkably distinct tropism for nodal vs. distant metastases in PDTC. RAS and BRAF sharply distinguish between PDTCs defined by the Turin (PDTC-Turin) vs. MSKCC (PDTC-MSK) criteria, respectively. Mutations of EIF1AX, a component of the translational preinitiation complex, are markedly enriched in PDTCs and ATCs, and have a striking pattern of co-occurrence with RAS. TERT promoter mutations are rare and subclonal in PTCs, whereas they are clonal and highly prevalent in advanced cancers. Application of the TCGA-derived BRAF-RAS score (a measure of MAPK transcriptional output) shows a preserved relationship with BRAF/RAS mutation in PDTCs, whereas ATCs are BRAF-like irrespective of driver mutation. CONCLUSIONS. These data support a model of tumorigenesis whereby PDTCs and ATCs arise from well-differentiated tumors through the accumulation of key additional genetic abnormalities, many of which have prognostic and possible therapeutic relevance. The widespread genomic disruptions in ATC compared to PDTC underscore their greater virulence and higher mortality.
Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers.
Sex, Specimen part
View Samples