Ustilago maydis is a basidiomycete fungus that causes smut disease in maize. Most prominent symptoms of the disease are plant tumors, which can be induced by U. maydis on all aerial parts of the plant. We identified two linked genes, pit1 and pit2, which are specifically expressed during plant colonization. Deletion mutants for either pit1 or pit2 are unable to induce tumor development and elicit plant defense responses.
Two linked genes encoding a secreted effector and a membrane protein are essential for Ustilago maydis-induced tumour formation.
Specimen part, Disease, Disease stage
View SamplesMany of the genes coding for secreted protein effectors are arranged in gene clusters in the genome of the biotrophic plant pathogen Ustilago maydis. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. The generation and analysis strains carrying sub-deletions identified 9 genes significantly contributing to tumor formation after seedling infection. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. Many of the genes coding for secreted protein effectors are arranged in gene clusters in the genome of the biotrophic plant pathogen Ustilago maydis. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. The generation and analysis strains carrying sub-deletions identified 9 genes significantly contributing to tumor formation after seedling infection. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets.
Characterization of the largest effector gene cluster of Ustilago maydis.
Specimen part, Treatment
View SamplesThe biotrophic fungus Ustilago maydis causes smut disease on maize (Zea mays L.), which is characterized by immense plant tumours. To establish disease and reprogram organ primordia to tumours, U. maydis deploys effector proteins in an organ-specific manner. However, the cellular contribution to leaf tumours remains unknown. We investigated leaf tumour formation on the tissue- and cell type-specific level. Cytology and metabolite analysis were deployed to understand the cellular basis for tumourigenesis. Laser-capture microdissection was performed to gain a cell-type specific transcriptome of U. maydis during tumour formation. In-vivo visualization of plant DNA synthesis identified bundle sheath cells as the origin of hyperplasic tumour cells, while mesophyll cells become hypertrophic tumour cells. Cell type specific transcriptome profiling of U. maydis revealed tailored expression of fungal effector genes. Moreover, U. maydis See1 was identified the first cell type specific fungal effector, being required for induction of cell cycle reactivation in bundle sheath cells. Identification of distinct cellular mechanisms in two different leave cell types, and See1 as an effector for induction of proliferation of bundle-sheath cells, are major steps in understanding U. maydis-induced tumor formation. Moreover, the cell-type specific U. maydis transcriptome data is a valuable resource to the scientific community. Overall design: To analyze the cell type specific transcriptome of U. maydis during the indcution of plant tumors, transcriptomic profiling of U. maydis from LCM-dissected tumour cells was done. At 4 dpi, SG200 infected HTT cells, bundle sheath-derived HPT cells, and SG200?see1 infected HTT cells (?see1 HTT) were isolated. As controls, mesophyll and bundle sheath cells from mock treated leaf tissue of the same age were isolated.
Cell type specific transcriptional reprogramming of maize leaves during Ustilago maydis induced tumor formation.
Specimen part, Subject
View SamplesThe fungal pathogen Ustilago maydis establishes a biotrophic relationship with its host plant maize. Hallmarks of the disease are large plant tumors in which fungal proliferation occurs. Plants have developed various defense pathways to cope with pathogens. We used microarrays to detail the global programme of gene expression during the infection process of Ustilago maydis in its host plant to get insights into the defense programs and the metabolic reprogramming needed to supply the fungus with nutrients.
Ustilago maydis infection strongly alters organic nitrogen allocation in maize and stimulates productivity of systemic source leaves.
Specimen part
View SamplesThe basidiomycete Ustilago maydis causes smut disease in maize. Colonization of the host plant is initiated by direct penetration of cuticle and cell wall of maize epidermis cells. The invading hyphae are surrounded by the plant plasma membrane and proliferate within the plant tissue. We identified a novel secreted protein, termed Pep1. Disruption mutants of pep1 are not affected in saprophytic growth and develop normal infection structures. However, pep1 mutants fail to penetrate the epidermal cell wall and elicit a strong plant defense response. Using Affymetrix maize arrays we identified about 110 plant genes which are differentially regulated in pep1 and wild type infections during the penetration stage.
Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells.
No sample metadata fields
View SamplesPlant damage promotes the interaction of lipoxygenases (LOX) with fatty acids yielding 9-hydroperoxides, 13-hydroperoxides and complex arrays of oxylipins. The action of 13-LOX on linolenic acid enables production of 12-oxo-phytodienoic acid (12-OPDA) and its downstream products, termed jasmonates. As signals, jasmonates have related yet distinct roles in the regulation of plant resistance against insect and pathogen attack. A similar pathway involving 9-LOX activity on linolenic and linoleic acid leads to the 12-OPDA positional isomer, 10-oxo-11-phytodienoic acid (10-OPDA) and 10-oxo-11-phytoenoic acid (10-OPEA), respectively; however, physiological roles for 9-LOX cyclopentenones have remained unclear. In developing maize (Zea mays) leaves, southern leaf blight (Cochliobolus heterostrophus) infection results in dying necrotic tissue and the localized accumulation of 10-OPEA, 10-OPDA and a series of related 14- and 12-carbon metabolites, collectively termed death acids. 10-OPEA accumulation becomes wound-inducible within fungal-infected tissues and at physiologically relevant concentrations acts as a phytoalexin by suppressing the growth of fungi and herbivores including Aspergillus flavus, Fusarium verticillioides, and Helicoverpa zea. Unlike previously established maize phytoalexins, 10-OPEA and 10-OPDA display significant phytotoxicity. Both 12-OPDA and 10-OPEA promote the transcription of defense genes encoding glutathione S-transferases, cytochrome P450s, and pathogenesis-related proteins. In contrast, 10-OPEA only weakly promotes the accumulation of multiple protease inhibitor transcripts. Consistent with a role in dying tissue, 10-OPEA application promotes cysteine protease activation and cell death which is inhibited by overexpression of the cysteine protease inhibitor maize cystatin-9. Functions for 10-OPEA and associated death acids are consistent with specialized roles in local defense reactions.
Maize death acids, 9-lipoxygenase-derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators.
Specimen part
View SamplesThe hemibiotrophic fungal pathogen Colletotrichum graminicola is the causal agent of anthracnose disease on maize stalks and leaves. After the formation of appressoria the host cell wall is penetrated by the conversion of appressorial turgor pressure into forceful ejection of a penetration peg. Subsequently, C. graminicola establishes biotrophic hyphae in the penetrated epidermis cell at around 36 hours post inoculation (hpi) until a switch of hyphal morphology and lifestyle takes place during the colonization of neighboring host cells at around 72 hpi. During the ensuing necrotrophic growth, dark necrotic lesions are formed that are visible as anthracnose symptoms. We used microarrays to detail the global programme of gene expression during the infection process of Colletotrichum graminicola in its host plant to get insight into the defense response of this compatible interaction and into the metabolic reprogramming needed to supply the fungus with nutrients.
Common Motifs in the Response of Cereal Primary Metabolism to Fungal Pathogens are not Based on Similar Transcriptional Reprogramming.
Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Nrf2 Modulates Host Defense during Streptococcus pneumoniae Pneumonia in Mice.
Specimen part
View SamplesThe transcription factor Nrf2 (gene symbol Nfe2l2) regulates the transcriptional response to oxidative stress and plays a critical protective role in the lungs.
Nrf2 Modulates Host Defense during Streptococcus pneumoniae Pneumonia in Mice.
Specimen part
View SamplesThe transcription factor Nrf2 (gene symbol Nfe2l2) regulates the transcriptional response to oxidative stress and plays a critical protective role in the lungs.
Nrf2 Modulates Host Defense during Streptococcus pneumoniae Pneumonia in Mice.
Specimen part
View Samples