Analysis of undifferentiated pleomorphic sarcoma/malignant fibrous histiocytoma-like tumors from LSL-KrasG12D, p53Fl/Fl mouse model of soft tissue sarcoma.
Cross species genomic analysis identifies a mouse model as undifferentiated pleomorphic sarcoma/malignant fibrous histiocytoma.
Specimen part
View SamplesThe purpose of this study was to characterise the effects of trastuzumab and pertuzumab, either as single agents or as combination therapy on gene and protein expression in human ovarian cancer in vivo. Illumina BeadChips were used to profile the transcriptome after four days treatment of SKOV3 tumor xenografts. Although genes involved with HER2, MAP-kinase and p53 signaling pathways were commonly induced by all treatments, a greater number and variety of genes were differentially expressed by the complementary combination therapies compared to either drug on its own. The protein level of the CDK-inhibitors p21 and p27 were increased in response to both agents alone and further by the combination; pERK signaling was inhibited by all treatments; but only pertuzumab alone inhibited pAkt signaling. The expression of proliferation, apoptosis, cell division and cell cycle markers was distinct in a panel of primary ovarian cancer xenografts, suggesting heterogeneity of response in ovarian cancer and the need to establish biomarkers of response.
Defining the molecular response to trastuzumab, pertuzumab and combination therapy in ovarian cancer.
Cell line
View SamplesThe cell of origin for rhabdomyosarcoma (RMS) and undifferentiated pleomorphic sarcoma (UPS) remains to be determined. We utilized two skeletal muscle specific inducible Cre mouse lines to transform both skeletal muscle stem cells and progenitors to determine which cells give rise to RMS and UPS.
Distinct and overlapping sarcoma subtypes initiated from muscle stem and progenitor cells.
No sample metadata fields
View SamplesSteroid hormone receptors are simultaneously active in many tissues and capable of altering each other's function. Estrogen receptor ? (ER) and glucocorticoid receptor (GR) are expressed in the uterus and their ligands have opposing effects on uterine growth. In endometrial tumors expressing high levels of ER, we surprisingly found that expression of GR is associated with poor prognosis. Dexamethasone reduced normal uterine growth in vivo; however, this growth inhibition was abolished in estrogen-induced endometrial hyperplasia. We observed low genomic binding site overlap when ER and GR are induced with their respective ligands; however, upon simultaneous induction they co-occupy more sites. GR binding is significantly altered by estradiol with GR recruited to ER bound loci that become more accessible upon estradiol induction. Gene expression responses to co-treatment were more similar to estradiol, but with novel regulated genes. Our results suggest phenotypic and molecular interplay between ER and GR in endometrial cancer. Overall design: ChIP-seq, ATAC-seq, and RNA-seq data collected from endometrial cancer cell lines induced with dexamethasone, estradiol, or the combination
FFPEcap-seq: a method for sequencing capped RNAs in formalin-fixed paraffin-embedded samples.
Cell line, Treatment, Subject
View SamplesFormaldehyde (FA), an endogenous cellular aldehyde, is a rat nasal carcinogen. In this study, concentration- and exposure-duration transitions in FA mode of action (MOA) were examined with pharmacokinetic (PK) modeling for tissue formaldehyde acetal (FAcetal) and glutathione (GSH) and with histopathology and gene expression studies for tissue responses in nasal epithelium from rats exposed to 0, 0.7, 2, 6, 10 or 15 ppm FA 6 hr/day for 1, 4 or 13 weeks. The study had two goals. The first goal was to develop a basic PK model to estimate various forms of tissue formaldehyde and tissue glutathione (GSH). The second goal was to compare histopathology and gene expression changes in nasal tissues caused by inhalation of FA with changes in tissue FAcetal and free GSH calculated from the PK model. Patterns of gene expression varied with concentration and with duration. At 0.7 and 2 ppm, sensitive response genes (SRGs) - associated with cellular stress, thiol transport/reduction, inflammation, and cell proliferation - were similarly upregulated at all exposure durations. At 6 ppm and greater, gene expression changes showed enrichment of pathways involved in cell cycle, DNA repair, and apoptosis processes. ERBB, EGFR, WNT, TGF-, Hedgehog, and Notch signaling were also enriched in differentially expressed genes. Benchmark doses (BMDs) for genes in significantly enriched pathways were lower at 13 weeks than at 1 or 4-week. The transcriptional and histological changes corresponded to PK model-predicted changes in free GSH at 0.7 and 2 ppm and in FAcetal at 6 ppm. DNA-replication stress, enhanced proliferation, metaplasia, and stem cell-niche activation appear to be associated with FA carcinogenesis at 6 ppm and above. Dose dependencies in MOA, the presence of high physiological FAcetal, and non-linear FAcetal/GSH tissue kinetics indicate that FA concentrations below 150 ppb (and probably any concentrations below irritant levels, i.e., ~ 1 ppm) would not increase cancer risks of inhaled FA in the nose or any other tissue. Closer examination of dose response relationships for endogenous compound toxicity could help guide biologically relevant approaches for chemical risk assessment.
Formaldehyde: integrating dosimetry, cytotoxicity, and genomics to understand dose-dependent transitions for an endogenous compound.
Sex, Age, Specimen part, Subject, Time
View SamplesNasopharyngeal carcinoma is an Epstein-Barr virus-associated epithelial cancer with high prevalence in Southeast Asia. mRNA expression levels were measured for essentially all human genes and all latent Epstein-Barr virus (EBV) genes in nasopharyngeal carcinoma tissue samples and normal nasopharyngeal tissues. Data were analyzed for differential gene expression between tumor and normal tissue and for correlations with levels of viral gene expression. Primary publications: Sengupta et al, 2006, Cancer Research 66(16): 7999-8006. Dodd et al, 2006, Cancer Epidemiology, Biomarkers & Prevention 15(11): 2216-2225.
Genes involved in DNA repair and nitrosamine metabolism and those located on chromosome 14q32 are dysregulated in nasopharyngeal carcinoma.
No sample metadata fields
View SamplesRATIONALE: Mechanical ventilation (MV) is an indispensable therapy for critically ill patients with acute lung injury and the adult respiratory distress syndrome. However, the mechanisms by which conventional MV induces lung injury remain unclear. OBJECTIVES: We hypothesized that disruption of the gene encoding Nrf2, a transcription factor which regulates the induction of several antioxidant enzymes, enhances susceptibility to ventilator-induced lung injury (VILI), while antioxidant supplementation attenuates such effect. METHODS: To test our hypothesis and to examine the relevance of oxidative stress in VILI, here we have assessed lung injury and inflammatory responses in Nrf2-deficient (Nrf2(-/-)) mice and wildtype (Nrf2(+/+)) animals following acute (2 h) injurious model of MV with or without administration of antioxidant. MEASUREMENTS AND MAIN RESULTS: Nrf2(-/-) mice displayed greater levels of lung alveolar and vascular permeability and inflammatory responses to MV as compared to Nrf2(+/+) mice. Nrf2-deficieny enhances the levels of several pro-inflammatory cytokines implicated in the pathogenesis of VILI. We found diminished levels of critical antioxidant enzymes and redox imbalance by MV in the lungs of Nrf2(-/-) mice; however antioxidant supplementation to Nrf2(-/-) mice remarkably attenuated VILI. When subjected to clinically relevant prolong period of MV, Nrf2(-/-) mice displayed greater levels of VILI than Nrf2(+/+) mice. Expression profiling revealed lack of induction of several VILI genes, stress response and solute carrier proteins and phosphatases in Nrf2(-/-) mice. CONCLUSIONS: Collectively, our data demonstrate for the first time a critical role for Nrf2 in VILI, which confers protection against cellular responses induced by MV by modulating oxidative stress.
Genetic and pharmacologic evidence links oxidative stress to ventilator-induced lung injury in mice.
No sample metadata fields
View SamplesWe performed RNA-seq analysis of polA transcripts in IMR-32 cells with shRNA-mediated depletion of CDK12 and CDK13 and GFP as a control Overall design: Expression of polA transcripts in IMR-32 cells with shRNA-mediated depletion of CDK12 and CDK13 using the RNA-seq library kit (QuantSeq 3' mRNA Sequencing REV, Lexogen) using 2 different shRNA constructs for each target in duplicate, for a total of 10 individual samples Please note that processed data files were generated from the merged replicates, as indicated in the corresponding sample description field.
CDK12 loss in cancer cells affects DNA damage response genes through premature cleavage and polyadenylation.
Specimen part, Cell line, Treatment, Subject
View SamplesWe performed RNA-seq analsysis of polA transcripts in Kelly and Kelly E9 resistant (E9R) cells treated with THZ531 for 6h and DMSO as a control Overall design: Expression of polA transcripts in Kelly and Kelly E9R cells treated with THZ531 using the RNA-seq library kit (QuantSeq 3' mRNA Sequencing REV, Lexogen) in duplicate, for a total of 8 indyvidual samples Please note that the bigWig processed data was generated from both replicates and is linked to the corresponding rep1 (*_1) sample records.
CDK12 loss in cancer cells affects DNA damage response genes through premature cleavage and polyadenylation.
Specimen part, Cell line, Treatment, Subject
View SamplesWe performed RNA-seq analsysis of polA transcripts in IMR-32 cells treated with THZ531 for 2 and 6h and DMSO as a control Overall design: Expression of polA transcripts in IMR-32 treated with THZ531 using the RNA-seq library kit (QuantSeq 3' mRNA Sequencing REV, Lexogen) in duplicate, for a total of 6 individual samples
CDK12 loss in cancer cells affects DNA damage response genes through premature cleavage and polyadenylation.
Cell line, Treatment, Subject
View Samples