In both beef and dairy cattle, the majority of embryo loss occurs in the first 14-16 days following insemination. During this period, the embryo is completely dependent on its maternal uterine environment for development, growth and ultimately survival, therefore an optimum uterine environment is critical to embryo survival.
Endometrial gene expression in high- and low-fertility heifers in the late luteal phase of the estrous cycle and a comparison with midluteal gene expression.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Negative energy balance and hepatic gene expression patterns in high-yielding dairy cows during the early postpartum period: a global approach.
No sample metadata fields
View SamplesIn high yielding dairy cows the liver undergoes extensive physiological and biochemical changes during the early postpartum period in an effort to re-establish metabolic homeostasis and to counteract the adverse effects of negative energy balance (NEB). These adaptations are likely to be mediated by significant alterations in hepatic gene expression. To gain new insights into these events an EB model was created using differential feeding and milking regimes to produce two groups of cows with either a mild (MNEB) (n=5) or severe NEB (SNEB) (n=6) status. Cows were slaughtered and liver tissues collected on days 6-7 of the first follicular wave postpartum. Using an Affymetrix 23k oligonucleotide bovine array to determine global gene expression in hepatic tissue of these cows, a total of 416 genes (189 up- and 227 down-regulated) were found to be altered by SNEB. Network analysis using Ingenuity Pathway Analysis revealed that SNEB was associated with widespread changes in gene expression classified into 36 gene networks including those associated with lipid metabolism, connective tissue development and function, cell signalling, cell cycle and metabolic diseases. Severe NEB cows displayed reduced expression of transcription activators and signal transducers that regulate the expression of genes and gene networks associated with cell signalling and tissue repair. These alterations are linked with increased expression of abnormal cell cycle and cellular proliferation associated pathways. This study provides new information and insights on the effect of SNEB on gene expression in high yielding Holstein Friesian dairy cows in the early postpartum period.
Negative energy balance and hepatic gene expression patterns in high-yielding dairy cows during the early postpartum period: a global approach.
No sample metadata fields
View SamplesIncreased energy demands to support lactation, coupled with lowered feed intake capacity results in negative energy balance (NEB) and is typically characterized by extensive mobilization of body energy reserves in the early postpartum dairy cow. The catabolism of stored lipid leads to an increase in the systemic concentrations of nonesterified fatty acids (NEFA) and -hydroxy butyrate (BHB). Oxidation of NEFA in the liver result in the increased production of reactive oxygen species and the onset of oxidative stress and can lead to disruption of normal metabolism and physiology. The immune system is depressed in the peripartum period and early lactation and dairy cows are therefore more vulnerable to bacterial infections causing mastitis and or endometritis at this time. A bovine Affymetrix oligonucleotide array was used to determine global gene expression in the spleen of dairy cows in the early postpartum period. Spleen tissue was removed post mortem from five severe NEB (SNEB) and five medium NEB (MNEB) cows 15 days postpartum.SNEB increased systemic concentrations of NEFA and BHB, and white blood cell and lymphocyte numbers were decreased in SNEB animals. A total of 545 genes were altered by SNEB. Network analysis using Ingenuity Pathway Analysis revealed that SNEB was associated with NRF2-mediated oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, natural killer cell signaling, p53 signaling, downregulation of IL-15, BCL-2, and IFN- ; upregulation of BAX and CHOP and increased apoptosis with a potential negative impact on innate and adaptive immunity.
Pleiotropic effects of negative energy balance in the postpartum dairy cow on splenic gene expression: repercussions for innate and adaptive immunity.
No sample metadata fields
View SamplesCellular mechanisms that contribute to low estradiol concentrations produced by the preovulatory ovarian follicle in cattle with a compromised metabolic status (such as lactatino) are largely unknown. To gain insight into the main metabolic mechanisms affecting preovulatory follicle function RNAseq profiling was conducted on non-lactating Holstein-Friesian heifers (n=16) and lactating Holstein-Friesian cows (n=17) at three stages of preovulatory follicle development: A) newly selected dominant follicle in the luteal phase (Selection); B) follicular phase before the LH surge (Differentiation) and C) pre-ovulatory phase after the LH surge (Luteinization). Based on a combination of RNA sequencing, ingenuity pathway analysis and Q-RT-PCR validation several important molecular markers involved in steroid biosynthesis, such as the expression of steroidogenic acute regulatory protein (STAR) within developing dominant follicles, were identified to be affected (downregulated) by the catabolic state. We propose that the adverse metabolic environment caused by lactation decreases preovulatory follicle function by affecting cholesterol transport into the mitochondria to initiate steroidogenesis. Overall design: Granulosa and Theca samples from the dominant follicle were taken from cows and heifers at stages: selection, differentiation and luteinization.
Effect of the metabolic environment at key stages of follicle development in cattle: focus on steroid biosynthesis.
Specimen part, Subject
View SamplesThe specific genes that influence neuroblastoma biology and are targeted by genomic alterations remain largely unknown. We quantified mRNA expression in a highly annotated series of 101 prospectively collected diagnostic neuroblastoma primary tumors and the expression profiles were determined using Affymetrix U95Av2 arrays. Comparisons between the sample groups allow the identification of genes with localized expression patterns. This study demonstrates that the genomic data can be used to subcategorize the disease into molecular subsets and the regional copy number alterations are correlated with a broad number of transcriptional alterations genome wide. This data also suggests that multiple genes from several discrete regions of the human genome co-operate to supress neuroblastoma tumorigenesis and progression.
Integrative genomics identifies distinct molecular classes of neuroblastoma and shows that multiple genes are targeted by regional alterations in DNA copy number.
No sample metadata fields
View SamplesComparative analysis of gene expression profiles in newly developed housing systems is important to understand gene functions in chicken for adaptation and possible gene-environment interactions among layer lines. Therefore, the objective of this study was to characterize the molecular processes that are different among the two layer lines Lohmann Selected Leghorn (LSL) and Lohmann Brown (LB) using whole genome RNA expression profiles. Despite their approximately identical egg production performance these layer lines differ markedly in other phenotypic traits. The two layer lines were kept under the production environment of the newly developed small group housing system Eurovent German with two different group sizes and three tiers.
Differential gene expression from genome-wide microarray analyses distinguishes Lohmann Selected Leghorn and Lohmann Brown layers.
Specimen part
View SamplesTo address the functional role of KDM6A in the regulation of Rhox genes, male and female mouse ES cells were transfected with a mixture of three small interfering RNA duplexes, each of which targets a different region of Kdm6a mRNA. We found that Kdm6a knockdown in mouse ES cells caused a decrease in expression of a subset of Rhox genes, Rhox6 and 9. Furthermore, Rhox6 and 9 expression was decreased in female ES cells but not male ES cells indicating that KDM6A regulates Rhox gene expression in a sexually dimorphic manner.
Female bias in Rhox6 and 9 regulation by the histone demethylase KDM6A.
Specimen part, Cell line
View SamplesLncRNA H19X was silienced in dermal fibroblats of systemic sclerosis patients with antisense oligonuclotides. The hypothesis tested in the present study was that H19X is an important factor in the development of TGFb-driven fibrosis. Results provide important information about the role H19X in fibroblasts in particolar on extracellular matrix production and cell cycle regulation.
Long noncoding RNA H19X is a key mediator of TGF-β-driven fibrosis.
Specimen part, Disease, Disease stage, Treatment
View SamplesWe reported transcriptional characterization of Treg and Tconv cells from thymic, splenic, and visceral adipose tissue (VAT) of vTreg53 TCR transgenic mice and control littermates. We examined the effect of Foxp3 on splenic and VAT CD4+ T cell transcriptome. We profiled gene expression in a novel PPARg+ splenic Treg population. We uncovered that the characteristic phenotype of VAT Treg cells was acquired in two stages. Overall design: Gene expression profiles of thymic, splenic, VAT Treg, Tconv, and Foxp3-transduced Tconv cells from vTreg53 TCR transgenic and PPARg reporter mice.
TCR Transgenic Mice Reveal Stepwise, Multi-site Acquisition of the Distinctive Fat-Treg Phenotype.
Specimen part, Cell line, Subject
View Samples