Twist1 variants including wildtype Twist1, a non-phosphorylatable mutant Twist1/S42A and a phospho-mimicking mutant Twist1/S42D were expressed in 4T1 cells in which the endogenous Twist1 was depleted.
Akt/PKB-mediated phosphorylation of Twist1 promotes tumor metastasis via mediating cross-talk between PI3K/Akt and TGF-β signaling axes.
Specimen part
View SamplesComparison of mRNA expression profiles of LT-HSCs with or without mutations in JAK2 and Ezh2 by RNA sequencing. LT-HSC mRNA was extracted from six different transgenic mice (SclCre, SclCre;Ezh2+/-, SclCre;Ezh2-/-, SclCre; JAK2V617F, SclCre; JAK2V617F;Ezh2+/-, SclCre; JAK2V617F;Ezh2-/-) 10 weeks after tamoxifen injection. Our study represents the first detailed analysis of mRNA expression profile of LT-HSC with or without mutations in JAK2 and Ezh2 , with biologic replicates, generated by RNA-seq technology. Our results revealed that mRNA expression profile of LT-HSC with different genotype showed specific gene expression patterns, which allows to do biological comprehensive and quantitative analysis for hematopoiesis. Overall design: LT-HSCs mRNA profiles six different transgenic mice (SclCre, SclCre;Ezh2+/-, SclCre;Ezh2-/-, SclCre; JAK2V617F, SclCre; JAK2V617F;Ezh2+/-, SclCre; JAK2V617F;Ezh2-/-) were generated by deep sequencing.
Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis.
Sex, Subject
View SamplesComparison of mRNA expression profiles of MEPs with or without mutations in JAK2 and Ezh2 by RNA sequencing. MEPs mRNA was extracted from six different transgenic mice (SclCre, SclCre;Ezh2+/-, SclCre;Ezh2-/-, SclCre; JAK2V617F, SclCre; JAK2V617F;Ezh2+/-, SclCre; JAK2V617F;Ezh2-/-) 10 weeks after tamoxifen injection. Our study represents the first detailed analysis of mRNA expression profile of MEP with or without mutations in JAK2 and Ezh2 , with biologic replicates, generated by RNA-seq technology. Our results revealed that mRNA expression profile of MEP with different genotype showed specific gene expression patterns, which allows to do biological comprehensive and quantitative analysis for hematopoiesis. Overall design: MEPs mRNA profiles six different transgenic mice (SclCre, SclCre;Ezh2+/-, SclCre;Ezh2-/-, SclCre; JAK2V617F, SclCre; JAK2V617F;Ezh2+/-, SclCre; JAK2V617F;Ezh2-/-) were generated by deep sequencing.
Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis.
Sex, Subject
View SamplesWe studied 498 de-novo adult DLBCL cases, which had been diagnosed between January 2002 and October 2009, as part of the International DLBCL Rituximab-CHOP Consortium Program Study
Addition of rituximab to chemotherapy overcomes the negative prognostic impact of cyclin E expression in diffuse large B-cell lymphoma.
No sample metadata fields
View SamplesDiffuse large B-cell lymphoma (DLBCL) represents a heterogeneous diagnostic category with distinct molecular subtypes that can be defined by gene expression profiling. However, even within these defined subtypes, heterogeneity prevails. To further elucidate the pathogenesis of these entities, we determined the expression of the tumor suppressor phosphatase and tensin homolog (PTEN) in 248 primary DLBCL patient samples. These analyses revealed that loss of PTEN was detectable in 55% of germinal center B-cell-like (GCB) DLBCLs, whereas this abnormality was found in only 14% of non-GCB DLBCL patient samples. In GCB DLBCL, the PTEN status was inversely correlated with activation of the oncogenic PI3K/ protein kinase B (AKT) pathway in both DLBCL cell lines and primary patient samples. Re-expression of PTEN induced cytotoxicity in PTEN-deficient GCB DLBCL cell line models by inhibiting PI3K/AKT signaling, indicating an addiction to this pathway in this subset of GCB DLBCLs. PI3K/AKT inhibition induced down-regulation of the transcription factor MYC. Re-expression of MYC rescued GCB DLBCL cells from PTEN-induced toxicity, identifying a regulatory mechanism of MYC expression in DLBCL. Finally, pharmacologic PI3K inhibition resulted in toxicity selectively in PTEN-deficient GCB DLBCL lines. Collectively, our results indicate that PTEN loss defines a PI3K/ AKT-dependent GCB DLBCL subtype that is addicted to PI3K and MYC signaling and suggest that pharmacologic inhibition of PI3K might represent a promising therapeutic approach in these lymphomas.
PTEN loss defines a PI3K/AKT pathway-dependent germinal center subtype of diffuse large B-cell lymphoma.
Sex, Disease, Cell line, Treatment
View SamplesThree ALCL cell lines DEL, FEPD and K299 were induced with an IRF4-specific shRNA for up to 96 hours.
Essential role of IRF4 and MYC signaling for survival of anaplastic large cell lymphoma.
Cell line
View SamplesOur aim was to identify genes that were differentially expressed in microglia stimulated with Lipopolysaccharide, Luteolin, or both.
Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype.
No sample metadata fields
View SamplesForced sustained swimming exercise at optimal speed enhances growth in many fish species, particularly through hypertrophy of the white skeletal muscle. The exact mechanism of this effect has not been resolved yet. To explore the mechanism, we first subjected wild-type zebrafish to an exercise protocol validated for exercise-enhanced growth, and showed that exercised zebrafish, which indeed showed enhanced growth, had higher cortisol levels than the non-exercised controls. A central role was therefore hypothesized for the steroid hormone cortisol acting through the Glucocorticoid receptor (Gr). Second, we subjected wild-type zebrafish and zebrafish with a mutant Gr to exercise at optimal, suboptimal and super-optimal speeds and compared them with non-exercised controls. Exercised zebrafish showed growth enhancement at all speeds, with highest growth at optimal speeds. In the Gr mutant fish, exercise resulted in growth enhancement similar to wild-type zebrafish, indicating that cortisol cannot be considered as a main determinant of exercise-enhanced growth. Finally, the transcriptome of white skeletal muscle tissue was analysed by RNA sequencing. The results of this analysis showed that in the muscle tissue of Gr mutant fish a lower number of genes is regulated by exercise than in wild-type fish (183 versus 351). A cluster of 36 genes was regulated by exercise in both wild-type and mutant fish. In this cluster, genes involved in transcriptional regulation and protein ubiquitination were overrepresented. Since growth was enhanced similarly in both wild-type fish and mutants, these processes may play an important role in exercise-enhanced growth. Overall design: Deep-sequencing transcriptome analysis of white muscle samples derived from wild-type (++) or glucocorticoid receptor (Gr) mutant (--) Danio rerio specimens that were exposed to either a resting (REST) or a swimming (UOPT) regimen: wild-type resting (REST++; n=3), Gr mutant resting (REST--; n=3), wild-type swimming (UOPT++; n=3), Gr mutant swimming (UOPT--; n=3).
Cortisol Acting Through the Glucocorticoid Receptor Is Not Involved in Exercise-Enhanced Growth, But Does Affect the White Skeletal Muscle Transcriptome in Zebrafish (<i>Danio rerio</i>).
Specimen part, Treatment, Subject
View SamplesNADPH-cytochrome P450 reductase (CPR) is important for the functions of many enzymes, such as microsomal cytochrome P450 (P450) monooxygenases and heme oxygenases. Two mouse models with deficient CPR expression in adults were recently generated in this laboratory: liver-Cpr-null (with liver-specific Cpr deletion) (Gu et al., J. Biol. Chem., 278, 2589525901, 2003) and Cpr-low (with reduced CPR expression in all organs examined) (Wu et al. J. Pharmacol. Expt. Ther. 312, 35-43, 2005). The phenotypes included a reduced serum cholesterol level and an induction of hepatic P450 in both models, and hepatomegaly and fatty liver in the liver-Cpr-null mouse alone. Our aim was to identify hepatic gene-expression changes related to these phenotypes. Cpr-lox mice, which have normal CPR expression (Wu et al., Genesis, 36, 177-181, 2003.), were used as the control in microarray analysis. A detailed analysis of the gene-expression changes in lipid metabolism and transport pathways revealed potential mechanisms, such as an increased activation of constitutive androstane receptor (CAR) and a decreased activation of peroxisomal proliferators activated receptor alpha (PPAR-gamma) by precursors of cholesterol biosynthesis, that underlie common changes (e.g., induction of multiple P450s and inhibition of genes for fatty acids metabolism) in response to CPR-loss in the two mouse models. Moreover, we also uncovered model-specific gene-expression changes, such as the induction of a lipid translocase (CD36 antigen) and the suppression of carnitine O-palmitoyltransferase 1 (CPT1a) and acyl-CoA synthetase long-chain family member 1 (Acsl1), that are potentially responsible for the severe hepatic lipidosis observed in liver-Cpr-null, but not Cpr-low mice.
Hepatic gene expression changes in mouse models with liver-specific deletion or global suppression of the NADPH-cytochrome P450 reductase gene. Mechanistic implications for the regulation of microsomal cytochrome P450 and the fatty liver phenotype.
No sample metadata fields
View SamplesAdenoid cystic carcinoma (ACC) is one of the most common malignancies that arise in the salivary glands, with an incidence of 4.5 per 1,000,000. It can also arise in glandular tissue closely related to salivary glands in the lacrimal gland, nasal passages and tracheobronchial tree, as well as in glands of the breast and vulva. At all of these sites, it is characterized by a distinctive histology of basaloid epithelial cells arranged in cribriform or tubular patterns, usually demonstrating abundant hyaline extracellular matrix secretion and some degree of myoepithelial differentiation. ACC is generally a slow-growing tumor characterized by a protracted clinical course, usually well over 5 years in duration, marked by regional recurrence, distant metastasis and/or spread along peripheral nerves. A recurrent chromosomal translocation, t(6;9)(q23;p21), has been identified in ACC, and recently it has been discovered that in a majority of ACC the MYB gene on chromosome 6 is fused to the 3 terminus of the NFIB gene on chromosome 9, creating a fusion gene product resulting in increased MYB-related transcriptional activation. Recently it has been determined that most cell lines with attribution of ACC derivation are either contaminants of other cell lines or do not have the characteristic MYB-NFIB translocation. Also, there are no animal models of this histologically and genetically defined tumor type. To address the paucity of experimental and pre-clinical models systems of ACC, we have for several years been establishing xenograft tumor lines from clinical samples of ACC. We describe our experience with these models and their characterization here.
Development and characterization of xenograft model systems for adenoid cystic carcinoma.
Specimen part
View Samples