In contrast to urodele amphibians and teleost fish, mammals lack the regenerative responses to replace large body parts. Amphibian and fish regeneration uses dedifferentiation, i.e. reversal of differentiated state, as a means to produce progenitor cells to eventually replace damaged tissues. Therefore, activation of dedifferentiation response in mammalian tissues holds an immense promise for human regenerative medicine. msx2 expression has been shown to peak at the early time points of amphibian limb regeneration. Despite this temporal importance in the heterogenous regenerating limb tissues, the potential role of msx2 in dedifferentiation was previously not addressed in salamander or mammalian muscle cells. In order to test this, we ectopically overexpressed msx2 in mammalian myotubes and profiled their transcriptomes using next generation sequencing. We identified 4964 up-regulated and 4464 down-regulated transcripts in myotubes compared to myoblasts (uninduced GFP control cells; = 1.5 fold; FDR corrected p-values < 0.01). Upon ectopic msx2 expression in myotubes, 923 transcripts were downregulated, whereas 1283 transcripts were upregulated. Based on msx2's potential role in dedifferentiation, we reasoned that the transcripts, which are normally upregulated in myotubes in comparison to myoblasts, should go down upon msx2-expression. In accord with this idea, 575 myotube-enriched transcripts were downregulated after one day of ectopic msx2 expression. Similarly, 331 myoblast-enriched transcripts were upregulated upon msx2 expression. Overall design: To extensively analyze transcriptome-wide changes upon ectopic msx2 expression in mammalian myotubes, we performed next generation RNA-sequencing (RNA-seq) on uninduced and induced isolated myotubes that have msx2 and GFP or GFP alone transgenes. As a reference for the undifferentiated state, we also sequenced the transcriptomes of uninduced myoblast cultures of these two transgenic constructs. Deep sequencing was performed using Illumina HiSeq.
Ectopic expression of Msx2 in mammalian myotubes recapitulates aspects of amphibian muscle dedifferentiation.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Radiogenomic Analysis of F-18-Fluorodeoxyglucose Positron Emission Tomography and Gene Expression Data Elucidates the Epidemiological Complexity of Colorectal Cancer Landscape.
Specimen part
View SamplesColorectal cancer is a highly heterogeneous disease, with variable molecular pathogenesis, involving multiple genomic and epigenetic alterations. Despite the significant advances in the diagnosis and treatment of colorectal cancer, it remains a major cause of morbidity and mortality, especially for countries in Northern America and Europe, as also in New Zealand & Australia. In this direction, the introduction of gene expression signatures derived from multiple layers of molecular & clinical dissection, may resolve the problems of heterogeneity and improve robust disease stratification
Radiogenomic Analysis of F-18-Fluorodeoxyglucose Positron Emission Tomography and Gene Expression Data Elucidates the Epidemiological Complexity of Colorectal Cancer Landscape.
Specimen part
View SamplesColorectal cancer is a highly heterogeneous disease, with variable molecular pathogenesis, involving multiple genomic and epigenetic alterations. Despite the significant advances in the diagnosis and treatment of colorectal cancer, it remains a major cause of morbidity and mortality, especially for countries in Northern America and Europe, as also in New Zealand & Australia. In this direction, the introduction of gene expression signatures derived from multiple layers of molecular & clinical dissection, may resolve the problems of heterogeneity and improve robust disease stratification.
Radiogenomic Analysis of F-18-Fluorodeoxyglucose Positron Emission Tomography and Gene Expression Data Elucidates the Epidemiological Complexity of Colorectal Cancer Landscape.
Specimen part
View SamplesIn most metazoan nuclei, heterochromatin is located at the nuclear periphery in contact with the nuclear lamina, which provides mechanical stability to the nucleus. We show that in cultured cells, chromatin de-compaction by the nucleosome binding protein HMGN5 decreases the sturdiness, elasticity, and rigidity of the nucleus. Mice overexpressing HMGN5, either globally or only in the heart, are normal at birth but develop hypertrophic heart with large cardiomyoctyes, deformed nuclei and disrupted lamina, and die of cardiac malfunction. Chromatin de-compaction is seen in cardiomyocytes of newborn mice but misshaped nuclei with disrupted lamina are seen only in adult cardiomyocytes, suggesting that loss of heterochromatin diminishes the ability of the nucleus to withstand the mechanical forces of the contracting heart. Thus, heterochromatin enhances the ability of the nuclear lamina to maintain the sturdiness and shape of the eukaryotic nucleus; a structural role for chromatin that is distinct from its genetic functions.
Chromatin decompaction by the nucleosomal binding protein HMGN5 impairs nuclear sturdiness.
Specimen part
View SamplesUnderstanding the mechanisms of host macrophage responses to Mycobacterium tuberculosis (M.tb.) is essential for uncovering potential avenues of intervention to boost host resistance to infection. Macrophage transcriptome profiling revealed M.tb. infection strongly induced expression of several enzymes controlling tryptophan (Trp) catabolism. This included indole 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO2), which catalyze the rate-limiting step in the kynurenine pathway, producing ligands for the aryl hydrocarbon receptor (AHR). The AHR and heterodimeric partners AHR nuclear translocator (ARNT) and RELB are robustly expressed, and AHR and RELB levels further increased during infection. Infection enhanced AHR/ARNT and AHR/RELB DNA binding, and stimulated expression of AHR target genes, including that encoding the inflammatory cytokine IL1beta. AHR target gene expression was further enhanced by exogenous kynurenine, and exogenous Trp, kynurenine or synthetic agonist indirubin reduced mycobacterial viability. Comparative expression profiling revealed that AHR ablation diminished expression of numerous genes implicated in innate immune responses, including several cytokines. Notably, AHR depletion reduced expression of IL23A and IL12B transcripts, which encode subunits of interleukin 23 (IL23), a macrophage cytokine that stimulates production of IL22 by innate lymphoid cells. The AHR directly induced IL23A transcription in human and mouse macrophages through near-upstream enhancer regions. Taken together, these findings show that AHR signaling is strongly engaged in Mtb-infected macrophages, and has widespread effects on innate immune responses. Moreover, they reveal a cascade of AHR-driven innate immune signaling, as IL1B (IL-1) and IL23 stimulate T cell subsets producing IL22, another direct target of AHR transactivation.
Engagement of the Aryl Hydrocarbon Receptor in Mycobacterium tuberculosis-Infected Macrophages Has Pleiotropic Effects on Innate Immune Signaling.
Cell line
View SamplesA growing body of literature has proposed cell-autonomous tumor suppressor functions for the mir-143~145 cluster in a variety of human cancers, including lung adenocarcinoma, and has reported therapeutic benefits of delivering mir-143 and mir- 145 to tumors. In contrast to these studies, we found that depletion or forced expression of mir-143 and mir-145 in an autochthonous mouse model of lung adenocarcinoma did not affect tumor development. Surprisingly, we observed that loss of mir-143~145 from the tumor microenvironment significantly reduced tumor burden, indicating a non-cell- autonomous role for these miRNAs in promoting tumorigenesis. By examining the expression patterns of different cell populations isolated in vivo from tumor-bearing lungs using an integrated computational approach, we identified a role for mir-145 in stimulating the proliferation of endothelial cells by downregulating an inhibitory kinase, Camk1d, which prevents mitotic entry. As a consequence, tumors in mir-143~145- deficient animals exhibited diminished hallmarks of neo-angiogenesis, increased apoptosis and their expansion appeared limited by the tumor’s ability to co-opt the alveolar vasculature. These findings show that expression of the mir-143~145 cluster in the tumor stroma promotes rather than suppresses tumorigenesis and cautions against the use of these miRNAs as agents in cancer therapeutics. Overall design: Epcam-positive, CD31-positive, and triple-negative (Epcam-CD31-CD45-) cell populations isolated by flow cytometry from tumor-bearing lungs of K-rasG12D/+, miR-143/145-proficient and -deficient mice. Three independent mice from each genotype were used as biological replicates.
Stromal Expression of miR-143/145 Promotes Neoangiogenesis in Lung Cancer Development.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of tumor suppressors and oncogenes from genomic and epigenetic features in ovarian cancer.
Sex, Disease, Disease stage, Treatment
View SamplesLyme disease (LD), caused by Borrelia burgdorferi, is the most common tick-borne infectious disease in the United States. We examined gene expression patterns in the blood of individuals with early disseminated LD at the time of diagnosis (Acute LD) and also at approximately 1 month and 6 months following antibiotic treatment. A distinct acute LD profile was observed that was sustained during early convalescence (1 month) but returned to control levels six months after treatment. Using a computer learning algorithm, we identified sets of 20 classifier genes that discriminate LD from other bacterial and viral infections. In addition, these novel LD biomarkers are highly acurate in distinvuishing patients with acute LD from healthy subjects and in discriminating between individuals with active and resolved infecitons. This computational approach offers the potential for more accurate diagnosis of early dissminated Lyme disease. It may also allow improved monitoring of treatment efficacy and disease resolution.
Global Transcriptome Analysis Identifies a Diagnostic Signature for Early Disseminated Lyme Disease and Its Resolution.
Disease, Disease stage
View SamplesThe identification of genetic and epigenetic alterations from primary tumor cells has become a common method to identify genes critical to the development and progression of cancer. We provide a bioinformatic analysis of copy number variation and DNA methylation covering the genetic landscape of ovarian cancer tumor cells. We individually examined the copy number variation and DNA methylation for 44 primary ovarian cancer samples and 7 ovarian normal samples using our MOMA-ROMA technology and Affymetrix expression data as well as 379 tumor samples analyzed by The Cancer Genome Atlas. We have identified 346 genes with significant deletions or amplifications among the tumor samples. Utilizing associated gene expression data we predict 156 genes with significantly altered copy number and correlated changes in expression. We identify changes in DNA methylation and expression for all amplified and deleted genes. We predicted 615 potential oncogenes and tumor suppressors candidates by integrating these multiple genomic and epigenetic data types.
Identification of tumor suppressors and oncogenes from genomic and epigenetic features in ovarian cancer.
Sex, Disease, Disease stage
View Samples