Global transcriptome analysis showed that human lymphatic endothelial cells (LECs) grown on a soft matrix exhibit increased GATA2 expression, concomitant with a GATA2-dependent upregulation of genes involved in cell migration and lymphangiogenesis, including the key lymphangiogenic growth factor receptor VEGFR3.
Matrix stiffness controls lymphatic vessel formation through regulation of a GATA2-dependent transcriptional program.
Specimen part
View SamplesHost-microbe associations underlie many key processes of host development, immunity, and life history. Yet, none of the current research on the central model species Caenorhabditis elegans considers the worm's natural microbiome. Instead, almost all laboratories exclusively use the canonical strain N2 and derived mutants, maintained through routine bleach sterilization in monoxenic cultures with an E. coli strain as food. Here, we characterize for the first time the native microbiome of C. elegans and assess its influence on nematode life history characteristics via transcriptomics. Overall design: mRNA profiles of wild type (WT) C.elegans fed to either Ochrobactrum strain MYb65, MYb71, mixture of MYb65 and MYb71 or standard lab food E. coli OP50 at different life stages (from L2 to adults) were generated by deep sequencing, in triplicate, using Illumina HiSeq2000.
The Inducible Response of the Nematode <i>Caenorhabditis elegans</i> to Members of Its Natural Microbiota Across Development and Adult Life.
Cell line, Treatment, Subject, Time
View SamplesGranulomas are immune cell aggregates formed in response to persistent inflammatory stimuli. Granuloma macrophage subsets are diverse and carry varying copy numbers of their genomic information. The molecular programs that control the differentiation of such macrophage populations in response to a chronic stimulus, though critical for disease outcome, have not been defined. In this study, we performed scRNA-Seq experiments to gain insights into the transcriptional regulation of polyploid macrophage differentiation in response to chronically persistent inflammatory stimuli. Overall design: scRNA-Seq was performed on FACS-sorted 2c and >4c DNA content polyploid macrophages after six days of bacterial lipoprotein, FSL-1 treatment of bone marrow-derived macrophage precursors. 2c DNA content macrophages treated with M-CSF alone were used as controls. CEL-Seq2 protocol was used for single cell sequencing (Hashimshony et al. 2016).
DNA Damage Signaling Instructs Polyploid Macrophage Fate in Granulomas.
Specimen part, Cell line, Subject
View SamplesMouse embryonic stem (ES) cells remain pluripotent in vitro when grown in presence of Leukaemia Inhibitory Factor (LIF). LIF starvation leads to apoptosis of some of the ES-derived differentiated cells, together with p38a MAP kinase activation. Apoptosis, but not morphological cell differentiation, is blocked by a p38 inhibitor, PD 169316. To further understand the mechanism of action of this compound, we have identified its specific targets by microarray studies. We report on the global expression profiles of genes expressed at three days upon LIF withdrawal (d3) compared to pluripotent cells and of genes whose expression is modulated at d3 under anti-apoptotic conditions. We showed that at d3 without LIF cells express, earlier than anticipated, specialized cell markers and that when the apoptotic process was impaired, expression of differentiation markers was altered. In addition, functional tests revealed properties of anti-apoptotic proteins not to alter cell pluripotency and a novel role for metallothionein 1 gene which prevents apoptosis of early differentiated cells.
Apoptosis and differentiation commitment: novel insights revealed by gene profiling studies in mouse embryonic stem cells.
No sample metadata fields
View SamplesANGPTL4 regulates plasma lipids, making it an attractive target for correcting dyslipidemia. However, ANGPTL4 inactivation in mice fed a high fat diet causes chylous ascites, an acute-phase response, and mesenteric lymphadenopathy. Here, we studied the role of ANGPTL4 in lipid uptake in macrophages and in the above-mentioned pathologies using Angptl4-hypomorphic and Angptl4-/- mice. Angptl4 expression in peritoneal and bone marrow-derived macrophages was highly induced by lipids. Recombinant ANGPTL4 decreased lipid uptake in macrophages, whereas deficiency of ANGPTL4 increased lipid uptake, upregulated lipid-induced genes, and increased respiration. ANGPTL4 deficiency did not alter LPL protein levels in macrophages. Angptl4-hypomorphic mice with partial expression of a truncated N-terminal ANGPTL4 exhibited reduced fasting plasma triglyceride, cholesterol, and non-esterified fatty acid levels, strongly resembling Angptl4-/- mice. However, during high fat feeding, Angptl4-hypomorphic mice showed markedly delayed and attenuated elevation in plasma serum amyloid A and much milder chylous ascites than Angptl4-/- mice, despite similar abundance of lipid-laden giant cells in mesenteric lymph nodes. In conclusion, ANGPTL4 deficiency increases lipid uptake and respiration in macrophages without affecting LPL protein levels. Compared with the absence of ANGPTL4, low levels of N-terminal ANGPTL4 mitigate the development of chylous ascites and an acute-phase response in mice.
Characterization of ANGPTL4 function in macrophages and adipocytes using <i>Angptl4</i>-knockout and <i>Angptl4</i>-hypomorphic mice.
No sample metadata fields
View SamplesEvaluation of transcripts from soybean seed tissue during seed fill for a pair of near-isogenic lines contrasting in seed protein and oil and carrying an introgression at the linkage group I protein QTL region. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Yung-Tsi Bolon. The equivalent experiment is GM11 at PLEXdb.]
Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
HILPDA Uncouples Lipid Droplet Accumulation in Adipose Tissue Macrophages from Inflammation and Metabolic Dysregulation.
Specimen part, Treatment
View SamplesDREAM (downstream regulatory element antagonist modulator) is a Ca2+-binding protein that binds DNA and represses transcription in a Ca2+-dependent manner. Previous studies have shown a role for DREAM in cerebellar function regulating the expression of the sodium/calcium exchanger3 (NCX3) in cerebellar granules to control Ca2+ homeostasis and survival of these neurons. To achieve a more global view of the genes regulated by DREAM in the cerebellum, we performed a genome-wide analysis in transgenic cerebellum expressing a Ca2+-insensitive/CREB-independent dominant active mutant DREAM (daDREAM). Our results indicate that DREAM is a major transcription factor in the cerebellum that regulates genes important for cerebellar development.
Reduced Mid1 Expression and Delayed Neuromotor Development in daDREAM Transgenic Mice.
Specimen part
View SamplesObesity leads to a state of chronic low-grade inflammation that features accumulation of lipid-laden macrophages in adipose tissue. Here, we determined the role of macrophage lipid droplet accumulation in the development of obesity-induced adipose tissue inflammation, using mice with myeloid-specific deficiency of the lipid-inducible HILPDA protein. HILPDA deficiency markedly reduced intracellular lipid levels and accumulation of fluorescently-labeled fatty acids. Decreased lipid storage in HILPDA-deficient macrophages could be rescued by inhibition of adipose triglyceride lipase (ATGL) and was associated with increased oxidative metabolism. In diet-induced obese mice, HILPDA deficiency did not alter inflammatory and metabolic parameters, despite markedly reducing lipid accumulation in macrophages. Overall, we find that HILPDA is a lipid-induced physiological inhibitor of ATGL-mediated lipolysis in macrophages that uncouples lipid storage in adipose tissue macrophages from inflammation and metabolic dysregulation. Our data question the contribution of lipid droplet accumulation in adipose tissue macrophages in obesity-induced inflammation and metabolic dysregulation.
HILPDA Uncouples Lipid Droplet Accumulation in Adipose Tissue Macrophages from Inflammation and Metabolic Dysregulation.
Specimen part
View SamplesObesity leads to a state of chronic low-grade inflammation that features accumulation of lipid-laden macrophages in adipose tissue. Here, we determined the role of macrophage lipid droplet accumulation in the development of obesity-induced adipose tissue inflammation, using mice with myeloid-specific deficiency of the lipid-inducible HILPDA protein. HILPDA deficiency markedly reduced intracellular lipid levels and accumulation of fluorescently-labeled fatty acids. Decreased lipid storage in HILPDA-deficient macrophages could be rescued by inhibition of adipose triglyceride lipase (ATGL) and was associated with increased oxidative metabolism. In diet-induced obese mice, HILPDA deficiency did not alter inflammatory and metabolic parameters, despite markedly reducing lipid accumulation in macrophages. Overall, we find that HILPDA is a lipid-induced physiological inhibitor of ATGL-mediated lipolysis in macrophages that uncouples lipid storage in adipose tissue macrophages from inflammation and metabolic dysregulation. Our data question the contribution of lipid droplet accumulation in adipose tissue macrophages in obesity-induced inflammation and metabolic dysregulation.
HILPDA Uncouples Lipid Droplet Accumulation in Adipose Tissue Macrophages from Inflammation and Metabolic Dysregulation.
Specimen part, Treatment
View Samples