Staphylococcus aureus has emerged as a significant pathogen causing severe, invasive disease in otherwise healthy people. Despite considerable advances in understanding the epidemiology, resistance mechanisms, and virulence factors produced by the bacteria, there is limited knowledge of the in vivo host immune response to acute, invasive S. aureus infections. Herein, we report that peripheral blood mononuclear cells from patients with severe S. aureus infections demonstrate a distinctive and robust gene expression profile which is validated in a distinct group of patients and on a different microarray platform. Application of a systems-wide modular analysis framework reveals significant over-expression of innate immunity genes and under-expression of genes related to adaptive immunity. Simultaneous flow cytometry analyses demonstrated marked alterations in immune cell numbers, with decreased central memory CD4 and CD8 T cells and increased number of monocytes. CD14+ monocyte numbers significantly correlated with the gene expression levels of genes related to the innate immune response. These results demonstrate the value of applying a systems biology approach that reveals the significant alterations in the components of circulating blood lymphocytes and monocytes in invasive S. aureus infections.
Enhanced monocyte response and decreased central memory T cells in children with invasive Staphylococcus aureus infections.
Sex, Treatment, Race
View SamplesCalcineurin/NFAT/IL-2 signaling pathway is activated in dendritic cells (DC) upon encounter of glucan, the main component of the fungal cell wall, raising the question about the role of NFAT-regulated genes in DC biology in vivo. To directly assess the function of IL-2 secreted by DC, we analyzed mice lacking of IL-2 in the DC lineage, CD4-expressing cells and with complete deletion of IL-2 in the germ line in a mouse model of pulmonary fungal infection. Here we found that specifically the loss of IL-2 in DC resulted in increased mice mortality upon the fungus Aspergillus fumigatus challenge and expansion of Th17 cells in the lung. We demonstrated that only CD103+DC were able to release IL-2 in acute phase of pulmonary Aspergillosis through the Ca2+-Calcineurin-NFAT signaling. We also found that NFAT mediates IL-23 transcription in lung DC, where IL-2 results essential in restraining the priming of a pathogenic infiltrating IL-17+Sca1+CD90+CD4+ cell with stem cell like properties. Thus, IL-2 and IL-23 secreted by DC in the lung have an antagonistic relationship on the Th17 differentiation program with IL-2 inducing T cell differentiation and IL-23 inducing a stem cell like molecular signature to Th17 cells upon Aspergillus challenge. DC-Il2-/- then confer the Th17 stemness, releasing IL-23 in response to the fungus contributing to the development of a Th17 cell effector population, particularly pathogenic in infection.
CD103(+) Dendritic Cells Control Th17 Cell Function in the Lung.
Cell line, Treatment
View SamplesWe treated Arabidopsis seedlings with chitosan and carried out a transcript profiling analysis (GeneChip microarrays) in order to identify genes and transcription factors regulated by chitosan. The results showed that jasmonate and defense responsive genes, camalexin and lignin biosynthetic genes were among genes up-regulated by chitosan. Several transcription factors are also strongly induced by chitosan.
Transcript profiling of chitosan-treated Arabidopsis seedlings.
Age, Treatment
View SamplesWe recently described TRIM8, a nuclear E3 ubiquitin ligase, whose expression inversely correlates with glioma grade. TRIM8 restoration suppresses cell growth and induces a significant reduction of clonogenic potential in both U87MG glioblastoma and patients' primary glioma cell lines. Since E3 ubiquitin ligase proteins regulate carcinogenesis through the timely control of many cellular processes such as DNA damage response, metabolism, transcription, and apoptosis, we reasoned that TRIM8 activity might impact on cell transcriptome patterns, thereby promoting cancer development and progression. Therefore, we profiled the whole transcriptome of normal embryonic neural stem cells (eNSC) infected with a retrovirus expressing FLAG-Trim8 by using RNA-Seq. RNA-Seq revealed 1365 differentially expressed transcripts of 912 genes. 723 of them (corresponding to 648 RefSeq genes) differed significantly of at least 1.5 folds (192 upregulated transcripts of 178 genes and 531 downregulated transcripts of 470 genes). 80 genes, among all differentially expressed genes, resulted to significantly enrich 18 pathways by IPA analysis. 53% of these genes (43 out of 80 genes) are related to cell-morphology, cell death and survival, with a preponderantly representation of signaling pathways related to neurotransmission and to CNS, including axonal guidance, GABA Receptor, ephrin B, synaptic long-term potentiation/depression, and glutamate receptor. Specifically, our results substantiate the role of TRIM8 in the brain functions through the dysregulation of genes involved in different pathways, including JAK-STAT. Finally, we provided additional evidence about the existence of a functional interactive crosstalk between TRIM8 and STAT3 with possible implications in the development and progression of glioma. Overall design: Profiling the transcriptome of TRIM8-expressing primary mouse embryonal neural stem cells using RNA-Seq
TRIM8-driven transcriptomic profile of neural stem cells identified glioma-related nodal genes and pathways.
Specimen part, Subject
View SamplesHairy cell leukemia (HCL) shows unique clinico-pathological and biological features. HCL responds well to purine analogues but relapses are frequent and novel therapies are required. BRAF-V600E is the key driver mutation in HCL and distinguishes it from other B-cell lymphomas, including HCL-like leukemias/lymphomas (HCL-variant and splenic marginal zone lymphoma). The kinase-activating BRAF-V600E mutation also represents an ideal therapeutic target in HCL. Here, we investigated the biological and therapeutic importance of the activated BRAF-MEK-ERK pathway in HCL by exposing in vitro primary leukemic cells purified from 26 patients to clinically available BRAF (Vemurafenib; Dabrafenib) or MEK (Trametinib) inhibitors. Results were validated in vivo in samples from Vemurafenib-treated HCL patients within a phase-2 clinical trial. BRAF and MEK inhibitors caused, specifically in HCL (but not HCL-like) cells, marked MEK/ERK dephosphorylation, silencing of the BRAF-MEK-ERK pathway transcriptional output, loss of the HCL-specific gene expression signature, downregulation of the HCL markers CD25, TRAP and cyclin-D1, smoothening of leukemic cells' hairy surface, and, eventually, apoptosis. Apoptosis was partially blunted by co-culture with bone marrow stromal cells antagonizing MEK-ERK dephosphorylation. This protective effect could be counteracted by combined BRAF and MEK inhibition. Our results strongly support and inform the clinical use of BRAF and MEK inhibitors in HCL.
BRAF inhibitors reverse the unique molecular signature and phenotype of hairy cell leukemia and exert potent antileukemic activity.
Specimen part, Treatment, Subject
View SamplesTo investigate the impact of the iNKT cells on the tumor-infiltrating leukocytes in TRAMP mouse prostate cancer.
Bimodal CD40/Fas-Dependent Crosstalk between iNKT Cells and Tumor-Associated Macrophages Impairs Prostate Cancer Progression.
Age, Specimen part
View SamplesBasal cell carcinoma initiating cells undergo profound and rapid reprogramming into embryonic hair follicle progenitor like fate upon SmoM2 expression. Activation of Wnt/-catenin signaling pathways is required in a cell autonomous manner for the reprogramming of adult IFE progenitors into EHFP-like fate as well as for tumor initiation.
Adult interfollicular tumour-initiating cells are reprogrammed into an embryonic hair follicle progenitor-like fate during basal cell carcinoma initiation.
Specimen part
View SamplesGene expression analysis identified a CRC related signature of differentially expressed genes discriminating patients Responder and Non Responder to radiochemotherapy
A functional biological network centered on XRCC3: a new possible marker of chemoradiotherapy resistance in rectal cancer patients.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesLgr6-positive cells have been shown to label stem/progenitors cells in several tissues including tongue and skin. However their role in mammary gland has never been investigated. Here we used Lgr6-eGFP-IRES-CreER2 mice to isolate and characterize Lgr6-positive population in mammary gland of 5-week old female mice. Overall design: Examination of transcriptional differences between Lgr6 positive and negative cells
Lgr6 labels a rare population of mammary gland progenitor cells that are able to originate luminal mammary tumours.
Sex, Specimen part, Subject
View SamplesLymphoblast cells from a patient with Freidriech's Ataxia were incubated with pyrrole-imidazole polyamides targeted to the GAA triplet repeat in the intron 1. The polyamides were shown in cell culture to increase levels of endogenous frataxin mRNA. A normal sibling derived lymphoblast cell line was used as a control.
DNA sequence-specific polyamides alleviate transcription inhibition associated with long GAA.TTC repeats in Friedreich's ataxia.
No sample metadata fields
View Samples