We report our results of RNA-seq analysis on freshly isolated, sorted subsets of cytotoxic lymphocytes Overall design: RNA was isolated from sorted cells. Libraries were created using standard Illumina reagents and analyzed using a HiSeq2500.
ARID5B regulates metabolic programming in human adaptive NK cells.
Specimen part, Subject
View SamplesVascular hypoperfusion is a pathological phenomenon in the glaucomatous optic nerve head. We report transcriptional responses in GFAP-negative LC cells exposed to in-vitro hypoxic stress (1%O2).
Hypoxia regulated gene transcription in human optic nerve lamina cribrosa cells in culture.
Specimen part
View SamplesRett syndrome (RTT) is a severe neurodevelopmental disorder that is caused by mutations in the gene methyl-CpG-binding-protein-2 (MECP2). However, the molecular mechanism by which these mutations mediate the RTT neuropathology remains enigmatic. In this study, we stimulated MeCP2-null cortical neurons (in vitro) and brains (in vivo) of a RTT mouse model to explore the effect of the loss of MeCP2 function on the activity-dependent transcriptomes of the cortex and hippocampus, respectively, using RNA-seq. These analyses revealed that the loss of MeCP2 results in aberrant global pattern of gene expression, characterized predominantly by higher levels of expression of activity-dependent genes, and anomalous alternative splicing events, specifically in response to neuronal activity. Overall design: For in vitro experiments, RNA-seq was performed on MeCP2-null (MT) and wild-type (WT) neuron-enriched cortical cultures that were either treated (T) with KCl for 3hr or not treated (N), after 10 days in culture. For in vivo experiments, RNA-seq was performed on hippocampi of MeCP2-null (MT) and wild-type (WT) mice that were either treated with kainic acid for 40 or 68 minutes, or not treated.
Activity-dependent aberrations in gene expression and alternative splicing in a mouse model of Rett syndrome.
Specimen part, Treatment, Subject, Time
View SamplesThe basic unit of genome packaging is the nucleosome, and nucleosomes have long been proposed to restrict DNA accessibility both to damage and to transcription. However, nucleosome number in cells was considered fixed, and no condition was described where nucleosome number was reduced. We show here that mammalian cells lacking High Mobility Group Box 1 protein (HMGB1) contain a reduced amount of core, linker and variant histones, and a correspondingly reduced number of nucleosomes. Yeast nhp6 mutants lacking NHP6A and B proteins, which are related to HMGB1, also have a reduced amount of histones and fewer nucleosomes. Nucleosome limitation in both mammalian and yeast cells increases the sensitivity of DNA to damage, increases transcription globally, and the relative expression of about 10% of genes. In yeast nhp6 cells the loss of more than one nucleosome in four does not affect the location of nucleosomes and their spacing, but nucleosomal occupancy. The decrease in nucleosomal occupancy is non-uniform, and our results can be modelled assuming that different nucleosomal sites compete for the available histones: sites with high affinity are almost always packaged into nucleosomes both in wt and nucleosome-depleted cells, whereas sites with low affinity are less frequently packaged in nucleosome-depleted cells. We suggest that by modulating the occupancy of nucleosomes histone availability may constitute a novel layer of epigenetic regulation.
Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output.
No sample metadata fields
View SamplesThe aim of this study is to evaluate the effect of Autoimmune regulator (Aire) gene disruption in a murine medullary thymic epithelial cells (mTEC 3.10 cell line) on the transcriptome of these cells during its adhesion with thymocytes. The mTEC-thymocyte adhesion is a crucial step for the negative selection of autoreactive thymocytes and prevention of autoimmune diseases. To generate Aire mutant cell clones, a total of 5x10^5 mTEC 3.10 cells were electro-transfected (Lonza Nucleofector) with CRISPR-Cas9 plasmid targeting the Aire Exon 3 (plasmid "all in one" encoding Aire Exon 3 gRNA + Cas9 + GFP, from Sigma-Aldrich). The GFP positive mTEC single cells were sorted by using a FACS Aria III cytometer and cells were cloned by expansion in culture. Sanger sequencing of PCR products from the Aire Exon 3 of these clones was used in order to evaluate the occurrence of indel mutations within the targeted Exon 3. The mTEC 3.10 clone E6 was identified and validated as a compound heterozygous Aire KO (Aire +/-). This clone features the Aire allele 1 that encodes a mutant Aire protein carring a neutral aminoacid substitution (A118P) and allele 2 encoding a truncated Aire protein. Wild type (WT) mTEC 3.10 cells or mTEC 3.10 clone E6 were cultured in the presence (or not) of thymocytes in order to establish cell adhesion. The total RNA preparations from WT or clone E6 mTEC cells (before or after mTEC- thymocyte co-cultures) were then sequenced through RNA-sequencing using a Illumina HiSeq 2500 instrument and the TruSeq Stranded mRNA Library Preparation kit resulting in about 50 million paired-end stranded specific 100 bp reads per sample. Sequencing reads were mapped to Mus musculus reference genome (mm10) using STAR v.2.5.0a. Read counts over transcripts were calculated using HTSeq v.0.6.1p2 based on a current UCSC annotation file for GRCm38/mm10 (Dec. 2011). Overall design: The mRNA profiles of mTEC 3.10 cells carring WT Aire (before or after co-culture with thymocytes) or heterozygous KO mTEC 3.10 cells (clone E6, Aire +/-) (before or after co-culture with thymocytes) were generated by sequencing, in duplicates, using a Illumina HiSeq 2500 instrument.
Aire Disruption Influences the Medullary Thymic Epithelial Cell Transcriptome and Interaction With Thymocytes.
Specimen part, Cell line, Subject
View SamplesHereditary Persistence of Fetal Hemoglobin (HPFH) is characterized by persistent high levels of fetal hemoglobin (HbF) in adults. Several contributory factors, both genetic and environmental, have been identified, but others remain elusive. Ten of twenty-seven members from a Maltese family presented with HPFH. A genome-wide SNP scan followed by linkage analysis revealed a candidate region on chromosome 19p13.12-13. Sequencing identified a nonsense mutation in the KLF1 gene, p.K288X, ablating the DNA binding domain of this key erythroid transcriptional regulator. Only HPFH family members were heterozygote carriers of this mutation. Expression profiling on primary erythroid progenitors revealed down-regulation of KLF1 target genes in HPFH samples. Functional assays demonstrated that, in addition to its established role in adult globin expression, KLF1 is a critical activator of the BCL11A gene, encoding a suppressor of HbF expression. These observations provide a rationale for the effects of KLF1 haploinsufficiency on HbF levels. To identify differentially expressed genes, RNA was isolated from erythroid progenitors (HEPs) cultured from peripheral blood of four HPFH (KLF1 p.K288X/wt) and four non-HPFH family members (wt/wt) and used for genome-wide expression analysis.
Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin.
Specimen part
View SamplesTo inhibit INS expression, we used shRNA to target the INS promoter. We find that knocking down INS expression with such an shRNA targeting the INS promoter significantly affects expression of 259 genes. Overall design: mRNA profiles of EndoC ßH1 with or without shRNA targetting INS promoter were generated by deep sequencing, in triplicate, using Illumina Hiseq 2500.
<i>Insulin</i> promoter in human pancreatic β cells contacts diabetes susceptibility loci and regulates genes affecting insulin metabolism.
Specimen part, Cell line, Treatment, Subject
View SamplesGenetically engineered mouse models of cancer represent valuable biological tools that can be used to filter genome-wide expression datasets generated from human prostate tumours, and identify gene expression alterations that are functionally important to cancer development and progression. In this study, we have generated RNASeq data from tumours arising in two established mouse models of prostate cancer, PB-Cre/PtenloxP/loxP and p53loxP/loxPRbloxP/loxP, and integrated this with published human prostate cancer expression data to pinpoint cancer-associated gene expression changes that are conserved between the two species. In order to identify potential therapeutic targets, we then filtered this information for genes that are either known or predicted to be druggable. Using this approach, we identified the serine/threonine kinase MELK as a potential therapeutic target in prostate cancer. MELK was overexpressed in both human and murine prostate cancers, and high expression of MELK was associated with biochemical recurrence in prostate cancer patients. Overall design: 92 Samples
Identification of potential therapeutic targets in prostate cancer through a cross-species approach.
Cell line, Subject
View SamplesTranscription is a major contributor to genome instability. A main cause of transcription-associated instability relies on the capacity of transcription to stall replication. Such genome instability is increased in RNAPII mutants.
RNA polymerase II contributes to preventing transcription-mediated replication fork stalls.
No sample metadata fields
View SamplesThe complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously, we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we compared the signature found between unrelated healthy controls and non-diabetic cystic fibrosis patients possessing Pseudomonas aeruginosa pulmonary tract infection.
Identification of molecular signatures of cystic fibrosis disease status with plasma-based functional genomics.
No sample metadata fields
View Samples