The intestinal immune system must elicit robust immunity against harmful pathogens but restrain immune responses directed against commensal microbes and dietary antigens. The mechanisms that maintain this dichotomy are poorly understood. Here we describe a population of CD11b+F4/80+CD11c macrophages in the lamina propria (LP) that express several anti-inflammatory molecules including interleukin 10 (IL-10), but little or no pro-inflammatory cytokines, even upon stimulation with Toll-like receptor (TLR) ligands. These macrophages induced, in a manner dependent on IL-10, retinoic acid and exogenous transforming growth factor-, differentiation of FoxP3+ regulatory T cells. In contrast, LP CD11b+ dendritic cells elicited IL-17 production. This IL-17 production was suppressed by LP macrophages, indicating that a dynamic interplay between these subsets may influence the balance between immune activation and tolerance.
Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses.
No sample metadata fields
View SamplesActivation of inflammatory pathways in human IBD
Activation of an IL-6:STAT3-dependent transcriptome in pediatric-onset inflammatory bowel disease.
No sample metadata fields
View SamplesPathological bone changes differ considerably between inflammatory arthritic diseases, and most studies have focused on bone erosion. Collagen Induced Arthritis (CIA) is a model for Rheumatoid Arthritis, which, in addition to bone erosion, demonstrates bone formation at the time for clinical manifestations. The objective of this study was to use the CIA model to study bone remodelling by performing a gene expression profiling time-course study on the CIA model.
Kinetics of gene expression and bone remodelling in the clinical phase of collagen-induced arthritis.
Specimen part
View SamplesAbstract: Histones are small proteins that form the core of nucleosomes, around which eukaryotic DNA wraps to ultimately form the highly organized and compressed structure known as chromatin. The N-terminal tails of histones are highly modified, and the modification state of these proteins dictates whether chromatin is permissive or repressive to processes that require physical access to DNA, including transcription and DNA replication and repair. The enzymes that add and remove histone modifications are known to be exquisitely sensitive to endogenous small molecule metabolite availability. In this manner, chromatin can adapt to changes in environment, particularly diet-induced metabolic state. Importantly, gut microbiota contribute to robust host metabolic phenotypes, and produce a myriad of metabolites that are detectable in host circulation. Further, gut microbial community composition and metabolite production are regulated by host diet, as a major source of carbon and energy for the microbiota. While prior studies have reported robust host metabolic associations with gut microbiota, the mechanisms therein remain largely unknown. Here we demonstrate that microbial colonization regulates global histone acetylation and methylation in multiple host tissues including colon, adipose tissue, and liver. This regulatory relationship is altered by diet: a “Western-type” diet leads to a general suppression of the microbiota-dependent chromatin changes observed in a polysaccharide rich diet. Finally, we demonstrate that supplementation of germ-free mice with major products of gut bacterial fermentation (i.e., short-chain fatty acids acetate, propionate, and butyrate) is sufficient to recapitulate many of the effects of colonization on host epigenetic states. These findings have profound implications for understanding the complex functional interactions between diet, gut microbiota, and host health. Overall design: 15 samples in total (biological n=3 per for each of 5 conditions; 19kw old male C57BL/6J mouse liver): (1) GF mouse liver on chow diet, (2) ConvR mouse liver on chow diet, (3) ConvD mouse liver on chow diet, (4) GF mouse liver on HF/HS diet, (5) ConvR mouse liver on HF/HS diet
Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues.
Cell line, Subject
View SamplesAbstract: Histones are small proteins that form the core of nucleosomes, around which eukaryotic DNA wraps to ultimately form the highly organized and compressed structure known as chromatin. The N-terminal tails of histones are highly modified, and the modification state of these proteins dictates whether chromatin is permissive or repressive to processes that require physical access to DNA, including transcription and DNA replication and repair. The enzymes that add and remove histone modifications are known to be exquisitely sensitive to endogenous small molecule metabolite availability. In this manner, chromatin can adapt to changes in environment, particularly diet-induced metabolic state. Importantly, gut microbiota contribute to robust host metabolic phenotypes, and produce a myriad of metabolites that are detectable in host circulation. Further, gut microbial community composition and metabolite production are regulated by host diet, as a major source of carbon and energy for the microbiota. While prior studies have reported robust host metabolic associations with gut microbiota, the mechanisms therein remain largely unknown. Here we demonstrate that microbial colonization regulates global histone acetylation and methylation in multiple host tissues including colon, adipose tissue, and liver. This regulatory relationship is altered by diet: a “Western-type” diet leads to a general suppression of the microbiota-dependent chromatin changes observed in a polysaccharide rich diet. Finally, we demonstrate that supplementation of germ-free mice with major products of gut bacterial fermentation (i.e., short-chain fatty acids acetate, propionate, and butyrate) is sufficient to recapitulate many of the effects of colonization on host epigenetic states. These findings have profound implications for understanding the complex functional interactions between diet, gut microbiota, and host health. Overall design: 9 samples in total (biological n=3 per for each of 3 conditions; 14kw old male C57BL/6J mouse liver): (1) GF mouse liver on chow diet, (2) ConvD mouse liver on chow diet, (3) GF mouse liver on chow diet + supplemented drinking water with short chain fatty acids
Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues.
Cell line, Subject
View SamplesEtiolated Arabidopsis seedlings open their cotyledons and halt rapid elongation of hypocotyl when exposed to light (de-etiolation). Major light responsive components in this process have been identified and signaling pathways revealed, yet how the organ-specific light responses are achieved remains unknown. Here we report that a developmental regulator TCP4 (TEOSINTE BRANCHED1, CYCLOIDEA, and PCF) participates in photomorphogenesis and facilitates light-induced cotyledon-opening. We demonstrate that TCP4-like transcriptional factors, which predominantly express in cotyledons of both light and dark seedlings, activate SAUR16 and SAUR50 in response to light. Light repressor PIF3 (or PIFs, phytochrome-interacting factors), which accumulates in etiolated seedlings and rapidly declines upon light exposure, inhibits TCP4 promoter-binding and prevents activation of SAUR16/50 in darkness. Our study reveals how an interplay between light responsive factors and developmental regulators leads to signal-dependent and tissue-specific regulation of gene expressions, which ultimately resulted in organ-specific light responses during de-etiolation. Overall design: Cotyledon mRNA profiles of 4-day-old dark grown Col, mTCP4#4 and mTCP4#10 seedlings were generated by deep sequencing.
The Transcription Factors TCP4 and PIF3 Antagonistically Regulate Organ-Specific Light Induction of <i>SAUR</i> Genes to Modulate Cotyledon Opening during De-Etiolation in Arabidopsis.
Specimen part, Subject
View SamplesMale weanling Wistar rats from the Animal Facility at the Center for Experimental and Applied Pathology were divided into 4 groups and fed the following diets: 1) choline-deficient diet with VO [corn and hydrogenated oils) as lipids (CDVO); 2) choline-supplemented diet with VO as lipids (CSVO); 3) choline-deficient diet with MO as lipid (CDMO); and 4) choline-supplemented diet with MO as lipid (CSMO). Authors have adhered to appropriate NIH Guide for the Care and Use of Laboratory Animals. It is known that female rats are more resistant than male rats to AKI. Animals were sacrificed after receiving the experimental diets for 6 days. The left kidney was fixed in formaldehyde-buffer and stained with hematoxiline-eosin for histopathological analysis. The right kidney was cryopreserved for microarray analysis. Cryopreserved kidney was wrapped with aluminum foil and broken with a hammer previously wrapped with tape paper on a counter covered in aluminum. The pieces of the kidney were located in a mortar with liquid nitrogen to keep cryopreservation and were pulverized with a pestle. Nitrogen was added as it evaporated. The tissue was broken up to be completely pulverized. Powder was placed with a spatula in a cryotube supported on a dry ice with a layer of aluminum above. Before proceeding with another sample and to avoid contamination, the mortar, the pestle and the spatula were washed with tap water, distilled water and then alcohol. The tape of the hammer, the aluminum on the counter and the latex gloves were also replaced by new ones. Total RNA was purified from 30 milligrams of frozen rat kidney pools, using RNeasy Mini Kit [Qiagen GmbH, Hilden, Germany) according to the manufacturer's instructions. The biological concentration, integrity and quality of the RNA obtained were performing using NanoDrop 2000c (Thermo Fisher Scientific, Delaware, USA) and RIN (RNA Integrity Number). Five hundred nanograms of total RNA were processed and hybridized to Affymetrix GeneChip Rat Gene 1.0 ST Array (Affymetrix Inc, Singapore, Singapore), according to Ambion WT Expression Kit instructions (Ambion Inc, Texas, USA). Total RNA obtained during the tissue extraction was processed to obtain a double strand cDNA. After that we performed a in-vitro transcripition to generate antisence cRNA (aRNA). This aRNA was used to generate a single-stranded DNA (ss-DNA) using random primers and the dUTP +dNTP mix. The resulting single-stranded DNA (ss-DNA) containing the unnatural uracilbase is then treated with Uracil DNA Glycosylase, which specifically removes the uracilresidue from the ss-DNA molecules. In the same reaction, the APE 1 enzyme then cleaves the phosphodiester backbone where the base is missing, leaving a 3-hydroxyland a 5-deoxyribose phosphate terminus. Before this prosses, shorts ss-DNA fragments were labeled by terminal deoxynucleotidyl transferase (TdT) that covalently linked the 3-hydrosyl phosphate terminus whit Biotin Allonamide Triphosphate. The GeneChip Rat Gene 1.0 ST Array enables whole-genome, gene-level expression studies for well-characterized genes. It is a single GeneChip-brand array comprised of more than 722 254 unique 25-mer oligonucleotide features accounting for more than 27 342 gene-level probe sets. Results were scanned with GeneChip Scanner 3000 7G (Affymetrix Inc, Tokyo, Japan), and normalized by RMA algorithm using Affymetrix Expression Console Software. In addition, call values were retrieved by MAS5 algorithm, and only genes with a p (present) call value were used in the analysis. Differentially expressed genes were identified using limma (www.bioconductor.org) and p adjusted values and absolute log fold change greater than 1.5 were used for gene selection.
Molecular pathology of acute kidney injury in a choline-deficient model and fish oil protective effect.
Sex, Specimen part
View SamplesBackground: Humans with metabolic and inflammatory diseases frequently harbor lower levels of butyrate-producing bacteria in their gut. However, it is not known whether variation in the levels of these organisms is causally linked with disease development and whether diet modifies the impact of these bacteria on health. Results: We use germ-free apolipoprotein E-deficient mice colonized with synthetic microbial communities that differ in their capacity to generate butyrate to demonstrate that Roseburia intestinalis interacts with dietary components to (i) impact gene expression in the intestine, directing metabolism away from glycolysis and toward fatty acid utilization, (ii) improve intestinal barrier function, (iii) lower systemic inflammation and (iv) ameliorate atherosclerosis. Furthermore, intestinal administration of butyrate improves gut barrier function and reduces atherosclerosis development. Conclusions: Altogether, our results illustrate how modifiable diet-by-microbiota interactions impact cardiovascular disease, and suggest that interventions aimed at increasing the representation of butyrate-producing bacteria may provide protection against atherosclerosis. Overall design: Intestinal mRNA profiles of gnotobiotic ApoE KO mice colonized with "core" community or "core plus Roseburia intestinalis" were generated by deep sequencing using Illumina HiSeq.
Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model.
Age, Specimen part, Subject
View SamplesIncreased ploidy is common in tumors but treatments for tumors with excess chromosome sets are not available. Here, we characterize high-ploidy breast cancers and identify potential anticancer compounds selective for the high-ploidy state. Among 354 human breast cancers, 10% have mean chromosome copy number exceeding 3, and this is most common in triple negative and HER2-positive types. Women with high-ploidy breast cancers have higher risk of recurrence and death in two patient cohorts, demonstrating that it represents an important group for improved treatment. Because high-ploidy cancers are aneuploid, rather than triploid or tetraploid, we devised a two-step screen to identify selective compounds. The screen was designed to assure both external validity on diverse karyotypic backgrounds and specificity for high-ploidy cell types. This screen identified novel therapies specific to high-ploidy cells. First, we discovered 8-azaguanine, an antimetabolite that is activated by hypoxanthine phosphoribosyltransferase (HPRT), suggesting an elevated gene-dosage of HPRT in high-ploidy tumors can control sensitivity to this drug. Second, we discovered a novel compound, 2,3-Diphenylbenzo[g]quinoxaline-5,10-dione (DPBQ). DPBQ activates p53 and triggers apoptosis in a polyploid-specific manner, but does not inhibit topoisomerase or bind DNA. Mechanistic analysis demonstrates that DPBQ elicits a hypoxia gene signature and its effect is replicated, in part, by enhancing oxidative stress. Structure-function analysis defines the core benzo[g]quinoxaline-5,10 dione as being necessary for the polyploid-specific effects of DPBQ. We conclude that polyploid breast cancers represent a high-risk subgroup and that DPBQ provides a functional core to develop polyploid-selective therapy.
Identification of Selective Lead Compounds for Treatment of High-Ploidy Breast Cancer.
Cell line
View SamplesWe report the global pattern of ileal gene expression in a cohort of 359 treatment-naïve pediatric Crohn Disease, Ulcerative Colitis patients and controls. We focus on genes with consistent altered expression in inflamed and unaffected ileum of CD [ileal-involved CD (iCD) and non-invloved ileal CD (cCD)], but not in the ileum of ulcerative colitis or control. Overall design: Ileal biopsies were obtained during diagnostic colonoscopies of children and adolescents aged less than 17 years, who presented with IBD-like symptoms. All patients underwent baseline colonoscopy and histological characterization; non-IBD controls were those with suspected IBD, but with no microscopic or macroscopic inflammation and normal radiographic, endoscopic, and histologic findings. Biopsies were stored at -80 degrees.
Defining the Celiac Disease Transcriptome using Clinical Pathology Specimens Reveals Biologic Pathways and Supports Diagnosis.
No sample metadata fields
View Samples