The cellular origin of Ewing tumor (ET), a tumor of bone or soft tissues characterized by specific fusions between EWS and ETS genes, is highly debated. Through gene expression analysis comparing ETs with a variety of normal tissues, we show that the profiles of different EWS-FLI1-silenced Ewing cell lines converge toward that of mesenchymal stem cells (MSC). Moreover, upon EWS-FLI1 silencing, two different Ewing cell lines can differentiate along the adipogenic lineage when incubated in appropriate differentiation cocktails. In addition, Ewing cells can also differentiate along the osteogenic lineage upon long-term inhibition of EWS-FLI1. These in silico and experimental data strongly suggest that the inhibition of EWS-FLI1 may allow Ewing cells to recover the phenotype of their MSC progenitor.
Mesenchymal stem cell features of Ewing tumors.
Specimen part
View SamplesGene expression profiling of the medial (MGE), lateral (LGE) and caudal (CGE) ganglionic eminence, and cerebral cortex (CTX) at various embryonic stages (E12.5, E14 and E16).
Comprehensive spatiotemporal transcriptomic analyses of the ganglionic eminences demonstrate the uniqueness of its caudal subdivision.
Sex, Specimen part
View SamplesExpression in GFP vs. GFP/hTERT transduced CD8 T Lymphocytes from Healty Donors (HD) 1 and 2 at early and late passages. Using CD8+ T lymphocyte clones over-expressing telomerase we investigated the molecular mechanisms that regulate T cell proliferation. Transduction and subcloning procedures were performed on CD8 + naive T-cell clones isolated from two different healthy individuals aged between 30 to 35 years (HD1 and HD2). T-cell cloneswere transduced to express hTERT/GFP or GFP alone.
Mechanisms regulating the proliferative potential of human CD8+ T lymphocytes overexpressing telomerase.
No sample metadata fields
View SamplesUsing CD8+ T lymphocyte clones over-expressing telomerase weinvestigated the molecular mechanisms that regulate T cell proliferation. Transduction and subcloning procedures were performed on CD8 + naive T-cell clones isolated from two different healthy individuals aged between 30 to 35 years (HD1 and HD2). T-cell cloneswere transduced to express hTERT/GFP or GFP alone. HD2 was profiled on U133Plus 2.0 and submitted as a separate GEO series.
Mechanisms regulating the proliferative potential of human CD8+ T lymphocytes overexpressing telomerase.
No sample metadata fields
View SamplesUsing CD8+ T lymphocyte clones over-expressing telomerase weinvestigated the molecular mechanisms that regulate T cell proliferation. Transduction and subcloning procedures were performed on CD8 + naive T-cell clones isolated from two different healthy individuals aged between 30 to 35 years (HD1 and HD2). T-cell cloneswere transduced to express hTERT/GFP or GFP alone. HD1 was profiled on U133A and submitted as a separate GEO series.
Mechanisms regulating the proliferative potential of human CD8+ T lymphocytes overexpressing telomerase.
No sample metadata fields
View SamplesTo study the effect of balanced chromosomal rearrangements on gene expression, we compared the transcriptomes of cell lines from control and t(11;22)(q23;q11) individuals. This translocation between chromosomes 11 and 22 is the only recurrent constitutional non-Robertsonian translocation in humans. The number of differentially expressed transcripts between the translocated and control cohort is significantly higher than that observed between control samples alone, suggesting that balanced rearrangements have a greater effect on gene expression than normal variation. Altered expression is not limited to genes close to the translocation breakpoint suggesting that a long-range effect is operating. Indeed we show that the nuclear position of the derivative chromosome is altered compared to the normal chromosomes. Our results are consistent with recent studies that indicate a functional role for nuclear position in regulating the expression of some genes in mammalian cells. They may also have implications on reproductive separation, as we show that reciprocal translocations not only provide partial isolation for speciation but also significant changes in transcriptional regulation through alteration of nuclear chromosomes territories.
The effect of translocation-induced nuclear reorganization on gene expression.
Sex, Age, Specimen part
View SamplesPrimary tumor growth induces host tissue responses that are believed to support and promote tumor progression. Identification of the molecular characteristics of the tumor microenvironment and elucidation of its crosstalk with tumor cells may therefore be crucial for improving our understanding of the processes implicated in cancer progression, identifying potential therapeutic targets, and uncovering stromal gene expression signatures that may predict clinical outcome. A key issue to resolve, therefore, is whether the stromal response to tumor growth is largely a generic phenomenon, irrespective of the tumor type, or whether the response reflects tumor-specific properties. To address similarity or distinction of stromal gene expression changes during cancer progression, oligonucleotide-based Affymetrix microarray technology was used to compare the transcriptomes of laser-microdissected stromal cells derived from invasive human breast and prostate carcinoma. Invasive breast and prostate cancer-associated stroma was observed to display distinct transcriptomes, with a limited number of shared genes. Interestingly, both breast and prostate tumor-specific dysregulated stromal genes were observed to cluster breast and prostate cancer patients, respectively, into two distinct groups with statistically different clinical outcomes. By contrast, a gene signature that was common to the reactive stroma of both tumor types did not have survival predictive value. Univariate Cox analysis identified genes whose expression level was most strongly associated with patient survival. Taken together, these observations suggest that the tumor microenvironment displays distinct features according to the tumor type that provides survival-predictive value.
Identification of prognostic molecular features in the reactive stroma of human breast and prostate cancer.
Specimen part
View SamplesEvaluation of the role of RIP4 in lung adenocarcinoma revealed that RIP4 inhibits STAT3 signaling in vitro and in vivo. Repression of RIP4 enhanced STAT3 signaling activation in KRAS LSL/G12D/wt; p53flox/flox murine tumors. This promoted cancer dedifferentiation through ECM remodeling
RIP4 inhibits STAT3 signaling to sustain lung adenocarcinoma differentiation.
Age, Specimen part
View SamplesGlioblastoma (GBM) derived sphere lines and adherent cell lines are an important tool for research in basic and translational neuro-oncology. Documentation of their genetic identity has become a requirement for scientific journals and grant applications to exclude cross-contamination and misidentification that lead to misinterpretation of results. Here, we report expression data for 26 samples including 4 GBM derived sphere lines (4 x 3 replicates), 2 GBM derived sphere lines passaged through intracranial transplantation (2x 1), 2 adherent GBM derived cell lines (2 + 2 x 3 replicates), 4 corresponding glioblastoma tumors and 2 non-tumor brain tissues.
DNA fingerprinting of glioma cell lines and considerations on similarity measurements.
Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The Transcription Factor Tcf1 Contributes to Normal NK Cell Development and Function by Limiting the Expression of Granzymes.
Specimen part
View Samples