Expression data from HeLa cells treated with V-ATPase inhibitors or with desoxyferramine compared to HeLa treated with DMSO or medium with low LDL
Inhibition of iron uptake is responsible for differential sensitivity to V-ATPase inhibitors in several cancer cell lines.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Inhibition of pyrimidine synthesis reverses viral virulence factor-mediated block of mRNA nuclear export.
Specimen part, Cell line
View SamplesAnalysis of cellular response to DHODH inhibition at gene expression and nuclear/cytoplasmic distribution level.
Inhibition of pyrimidine synthesis reverses viral virulence factor-mediated block of mRNA nuclear export.
Specimen part
View SamplesAnalysis of cellular response to DHODH inhibition at gene expression and nuclear/cytoplasmic distribution level.
Inhibition of pyrimidine synthesis reverses viral virulence factor-mediated block of mRNA nuclear export.
Specimen part
View SamplesAnalysis of cellular response to DHODH inhibition at gene expression and nuclear/cytoplasmic distribution level.
Inhibition of pyrimidine synthesis reverses viral virulence factor-mediated block of mRNA nuclear export.
Specimen part
View SamplesWe report the differential gene expression differences between control and Ovol2-deficent newborn keratinocytes Overall design: Two control and two Ovol2-deficent samples were isolated
An Ovol2-Zeb1 transcriptional circuit regulates epithelial directional migration and proliferation.
Specimen part, Subject
View SamplesTargeting immunomodulatory pathways has ushered a new era in lung cancer therapy. Further progress requires deeper insights into the nature and dynamics of immune cells in the lung cancer micro-environment. Dendritic cells (DCs) represent a heterogenous and highly plastic immune cell system with a central role in controlling immune responses. The intratumoral infiltration and activation status of DCs emerge as clinically relevant parameters in lung cancer. In this study we used an orthotopic preclinical model of lung cancer to interrogate the transcriptome of lung tumor-infiltrating DCs and extract novel biologically and clinically relevant information. Lung tumor-infiltrating leukocytes expressing generic DC markers were found to predominantly consist of CD11b+ cells which, compared to peritumoral lung DC counterparts, strongly over-express the T cell inhibitory molecule PD-L1 and acquire classic markers of tumor-supporting macrophages (TAM) on their surface. Transcriptome analysis of these CD11b+ tumor-infiltrating DCs (TIDCs) indicates impaired anti-tumoral immunogenicity, confirms the skewing towards TAM-related features, and indicates exposure to a hypoxic environment. In paralled, TIDCs display a specific micro-RNA signature dominated by the prototypical lung cancer oncomir miR-31. Hypoxia was found to drive intrinsic miR-31 expression in CD11b+DCs. Conditioned medium of mir-31-overexpressing CD11b+DCs induces pro-invasive lung cancer cell shape changes and is enriched with the pro-metastatic factors S100A8 and S100A9. Finally, analysis of TCGA datasets reveals that the TIDC-associated miRNA signature has a negative prognostic impact in non-small cell lung cancer. Together, these data suggest a novel mechanism through which lung cancer co-opts the plasticity of the DC system to support tumoral progression. Targeting immunomodulatory pathways has ushered a new era in lung cancer therapy. Further progress requires deeper insights into the nature and dynamics of immune cells in the lung cancer micro-environment. Dendritic cells (DCs) represent a heterogenous and highly plastic immune cell system with a central role in controlling immune responses. The intratumoral infiltration and activation status of DCs emerge as clinically relevant parameters in lung cancer. In this study we used an orthotopic preclinical model of lung cancer to interrogate the transcriptome of lung tumor-infiltrating DCs and extract novel biologically and clinically relevant information. Lung tumor-infiltrating leukocytes expressing generic DC markers were found to predominantly consist of CD11b+ cells which, compared to peritumoral lung DC counterparts, strongly over-express the T cell inhibitory molecule PD-L1 and acquire classic markers of tumor-supporting macrophages (TAM) on their surface. Transcriptome analysis of these CD11b+ tumor-infiltrating DCs (TIDCs) indicates impaired anti-tumoral immunogenicity, confirms the skewing towards TAM-related features, and indicates exposure to a hypoxic environment. In paralled, TIDCs display a specific micro-RNA signature dominated by the prototypical lung cancer oncomir miR-31. Hypoxia was found to drive intrinsic miR-31 expression in CD11b+DCs. Conditioned medium of mir-31-overexpressing CD11b+DCs induces pro-invasive lung cancer cell shape changes and is enriched with the pro-metastatic factors S100A8 and S100A9. Finally, analysis of TCGA datasets reveals that the TIDC-associated miRNA signature has a negative prognostic impact in non-small cell lung cancer. Together, these data suggest a novel mechanism through which lung cancer co-opts the plasticity of the DC system to support tumoral progression.
The transcriptome of lung tumor-infiltrating dendritic cells reveals a tumor-supporting phenotype and a microRNA signature with negative impact on clinical outcome.
Specimen part
View SamplesWe generated a gene replacement allele of the E-cadherin locus that express an N-cadherin-GFP fusion in ES cells. Expression profiles of homozygous and heterozygous knock-in ES cells were analyzed in comparison to wt ES cells.
Adhesion, but not a specific cadherin code, is indispensable for ES cell and induced pluripotency.
No sample metadata fields
View SamplesDevelopment of systems allowing the maintenance of native properties of mesenchymal stromal cells (MSC) is a critical challenge for studying physiological functions of skeletal progenitors, as well as towards cellular therapy and regenerative medicine applications. Conventional stem cell culture in monolayer on plastic dishes (2D) is associated with progressive loss of functionality, likely due to the absence of a biomimetic microenvironment and the selection of adherent populations. Here we demonstrate that 2D MSC expansion can be entirely bypassed by culturing freshly isolated bone marrow cells within the pores of 3D scaffolds in a perfusion-based bioreactor system, followed by enzymatic digestion for cell retrieval. The 3D-perfusion system supported MSC growth while maintaining cells of the hematopoietic lineage, and thus generated a cellular environment mimicking some features of the bone marrow stroma. As compared to 2D-expansion, sorted CD45- cells derived from 3D-perfusion culture after the same time (3 weeks) or a similar extent of proliferation (7-8 doublings) maintained a 4.3-fold higher clonogenicity and exhibited a superior differentiation capacity towards all typical mesenchymal lineages, with similar immunomodulatory function in vitro. Transcriptomic analysis performed on MSC from 5 donors validated the robustness of the process and indicated a reduced inter-donor variability as well as a significant upregulation of multipotency-related gene clusters following 3D-perfusion as compared to 2D expansion. The described system offers a model to study how factors of a 3D engineered niche may regulate MSC function and, by streamlining conventional labor-intensive processes, is prone to automation and scalability within closed bioreactor systems.
Expansion of human mesenchymal stromal cells from fresh bone marrow in a 3D scaffold-based system under direct perfusion.
No sample metadata fields
View SamplesThe transcription factor NF-E2-related factor 2 (Nrf2) induces cytoprotective genes, but has also been linked to the regulation of hepatic energy metabolism. In order to assess the pharmacological potential of hepatic Nrf2 activation in metabolic disease, Nrf2 was activated over 8 weeks in mice on Western diet using two different siRNAs against kelch-like ECH-associated protein 1 (Keap1), the inhibitory protein of Nrf2. Whole genome expression analysis followed by pathway analysis demonstrated that the suppression of Keap1 expression induced genes that are involved in anti-oxidative stress defense and biotransformation, pathways proving the activation of Nrf2 by the siRNAs against Keap1. The expression of neither fatty acid- nor carbohydrate-handling proteins was regulated by the suppression of Keap1. Metabolic profiling of the animals did also not show effects on plasma and hepatic lipids, energy expenditure or glucose tolerance by the activation of Nrf2. The data indicate that hepatic Nrf2 is not a major regulator of intermediary metabolism in mice.
Chronic Activation of Hepatic Nrf2 Has No Major Effect on Fatty Acid and Glucose Metabolism in Adult Mice.
Specimen part, Treatment
View Samples