Transcriptome changes 1h or 4h following DELLA stabilisation in microdissected fully proliferating Arabidopsis leaves
Gibberellins and DELLAs: central nodes in growth regulatory networks.
Specimen part, Treatment, Time
View SamplesDrought is an important environmental factor affecting plant growth and biomass production. Despite this importance little is known on the molecular mechanisms regulating plant growth under water limiting conditions. The main goal of this work was to investigate, using a combination of growth and molecular profiling techniques, how stress arrests CELl proliferation in Arabidopsis thaliana leaves upon osmotic stress imposition.
Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest.
Specimen part
View SamplesDrought is an important environmental factor affecting plant growth and biomass production. Despite this importance, little is known on the molecular mechanisms regulating plant growth under water limiting conditions. The main goal of this work was to investigate, using a combination of growth and molecular profiling techniques, how Arabidopsis thaliana leaves adapt their growth to prolonged mild osmotic stress. Fully proliferating, expanding and mature leaves were harvested from plants grown on plates without (control) or with 25mM mannitol (osmotic stress) and compared to seedlings at stage 1.03.
Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress.
Specimen part
View SamplesThe final size of plant organs such as leaves is tightly controlled by environmental and genetic factors that must spatially and temporally coordinate cell expansion and cell cycle activity. However this regulation of organ growth is still poorly understood. The aim of this study is to gain more insight in the genetic control of leaf size in Arabidopsis by performing a comparative analysis of transgenic lines that produce larger leaves under standardized environmental conditions. To this end, we selected five genes, belonging to different functional classes, that all positively affect leaf size when over-expressed: AVP1, GRF5, JAW, BRI1 and GA20OX1. We show that the increase in leaf area in these lines depends on leaf position and growth conditions and that all five lines affect leaf size differently. However, in all cases an increase in cell number is, entirely or predominantly, responsible for the leaf size enlargement. By means of analyses of hormone levels, transcriptome and metabolome we provide deeper insight in the molecular basis of the growth phenotype for the individual lines. A comparative analysis between them indicates that enhanced organ growth is governed by different, seemingly independent pathways. The analysis of transgenic lines simultaneously over-expressing two growth-enhancing genes further supports the concept that multiple pathways independently converge on organ size control in Arabidopsis.
Increased leaf size: different means to an end.
Specimen part
View SamplesThe final size of plant organs such as leaves is tightly controlled by environmental and genetic factors that must spatially and temporally coordinate cell expansion and cell cycle activity. However this regulation of organ growth is still poorly understood. The aim of this study is to gain more insight in the genetic control of leaf size in Arabidopsis by performing a comparative analysis of transgenic lines that produce larger leaves under standardized environmental conditions. To this end, we selected five genes, belonging to different functional classes, that all positively affect leaf size when over-expressed: AVP1, GRF5, JAW, BRI1 and GA20OX1. We show that the increase in leaf area in these lines depends on leaf position and growth conditions and that all five lines affect leaf size differently. However, in all cases an increase in cell number is, entirely or predominantly, responsible for the leaf size enlargement. By means of analyses of hormone levels, transcriptome and metabolome we provide deeper insight in the molecular basis of the growth phenotype for the individual lines. A comparative analysis between them indicates that enhanced organ growth is governed by different, seemingly independent pathways. The analysis of transgenic lines simultaneously over-expressing two growth-enhancing genes further supports the concept that multiple pathways independently converge on organ size control in Arabidopsis.
Increased leaf size: different means to an end.
Specimen part
View SamplesThe final size of plant organs such as leaves is tightly controlled by environmental and genetic factors that must spatially and temporally coordinate cell expansion and cell cycle activity. However this regulation of organ growth is still poorly understood. The aim of this study is to gain more insight in the genetic control of leaf size in Arabidopsis by performing a comparative analysis of transgenic lines that produce larger leaves under standardized environmental conditions. To this end, we selected five genes, belonging to different functional classes, that all positively affect leaf size when over-expressed: AVP1, GRF5, JAW, BRI1 and GA20OX1. We show that the increase in leaf area in these lines depends on leaf position and growth conditions and that all five lines affect leaf size differently. However, in all cases an increase in cell number is, entirely or predominantly, responsible for the leaf size enlargement. By means of analyses of hormone levels, transcriptome and metabolome we provide deeper insight in the molecular basis of the growth phenotype for the individual lines. A comparative analysis between them indicates that enhanced organ growth is governed by different, seemingly independent pathways. The analysis of transgenic lines simultaneously over-expressing two growth-enhancing genes further supports the concept that multiple pathways independently converge on organ size control in Arabidopsis.
Increased leaf size: different means to an end.
Specimen part
View SamplesThe final size of plant organs such as leaves is tightly controlled by environmental and genetic factors that must spatially and temporally coordinate cell expansion and cell cycle activity. However this regulation of organ growth is still poorly understood. The aim of this study is to gain more insight in the genetic control of leaf size in Arabidopsis by performing a comparative analysis of transgenic lines that produce larger leaves under standardized environmental conditions. To this end, we selected five genes, belonging to different functional classes, that all positively affect leaf size when over-expressed: AVP1, GRF5, JAW, BRI1 and GA20OX1. We show that the increase in leaf area in these lines depends on leaf position and growth conditions and that all five lines affect leaf size differently. However, in all cases an increase in cell number is, entirely or predominantly, responsible for the leaf size enlargement. By means of analyses of hormone levels, transcriptome and metabolome we provide deeper insight in the molecular basis of the growth phenotype for the individual lines. A comparative analysis between them indicates that enhanced organ growth is governed by different, seemingly independent pathways. The analysis of transgenic lines simultaneously over-expressing two growth-enhancing genes further supports the concept that multiple pathways independently converge on organ size control in Arabidopsis.
Increased leaf size: different means to an end.
Specimen part
View SamplesAim: to perform a genome-wide investigation of chromatin landscape and gene expression patterns downstream of calcium and kinase signaling in Jurkat T cells. Methods: PMA and ionomycin were used to activate the calcium and kinase signalling networks involved in T cell activation. Global gene expression was measured using RNA-seq, whilst ATAC-seq was used to probe chromatin landscape following 3 hours of stimulation with PMA, ionomycin or both. All experiments were performed in triplicate. For RNA-seq all sequencing was performed using paired-end sequencing on an Illumina HiSeq2500 instrument. For ATAC-seq sequencing was performed using a HiSeq 1500. Results: we mapped approximately 60 million reads per sample for ATAC-seq, and 22 million reads per library for RNA-seq. Overall we identified 57,825 transcripts and 19,763 ATAC-seq peaks. We identifiead 1648 genes whose expression was increased by 2-fold or more by at least one treatment in comparison to untreated cells. Similarly, we identified 3972 ATAC peaks that were induced by at least 2-fold by treatment in comparison to untreated cells. Conclusions: we found that chromatin landscape was associated with gene expression downstream of calcium and kinase signaling in Jurkat cells. Further to this we found that activation of the full complement of TCR-responsive genes is dependent upon both PMA and ionomycin, and amounts to more than just the sum of both. Overall design: RNA-sequencing and ATAC-sequencing were performed after 3 hours of treatment with either PMA, ionomycin or co-treatment with PMA and ionomycin.
Integration of Kinase and Calcium Signaling at the Level of Chromatin Underlies Inducible Gene Activation in T Cells.
No sample metadata fields
View SamplesFusarium Head Blight susceptible barley variety, Morex, was infected with deoxynivalenol production deficient mutant strain (GZT40) and wild type stains (Z3639) of Fusarium graminearum. The RNA was sampled at 48 and 96 hours after inoculation. and was used hybridize to Barley_1 GeneChip. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Jayanand Boddu. The equivalent experiment is BB52 at PLEXdb.]
Transcriptome analysis of trichothecene-induced gene expression in barley.
Specimen part
View SamplesBarley cv. Morex inoculated with Fusarium graminearum (isolate Butte 86) or water (mock). Sampled at 24, 48, 72, 96 and 144 hours after treatment. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Jayanand Boddu. The equivalent experiment is BB9 at PLEXdb.]
Transcriptome analysis of the barley-Fusarium graminearum interaction.
Specimen part, Time
View Samples