Small RNA fractions from 6-8 week old C57BL/6 mouse hippocampus following electroconvulsive shock (ECS) Overall design: Size selected RNA clones using Illumina v1.0 DGE small RNA kit, sequenced using Illumina
Neuronal activity regulates hippocampal miRNA expression.
Specimen part, Cell line, Subject, Time
View SamplesWe screened for differentially expressed genes in the developing notochord using the Affymetrix microarray system in Xenopus laevis. At late gastrula, we dissected four regions from the embryo, anterior mesoderm, posterior mesoderm, notochord and presomitic mesoderm. Three types of comparison were carried out to generate a list of predominantly notochord expressed genes: (1) Posterior mesoderm vs. anterior mesoderm; notochord genes are expected to be increased since the notochord is located in the posterior mesoderm. (2) Posterior mesoderm vs. whole embryos; notochord genes are expected to be increased. (3) Notochord vs. somite. This comparison sub-divided the group of posterior mesodermal genes identified in (1) and (2). All tissues are dissected using tungsten needles. We first dissected dorsal tissue above the archenteron from late gastrula to early neurula. To loosen tissue, we treated the dissected dorsal explant in a 1% cysteine solution (pH 7.4) and removed the neuroectodermal layer. Anterior mesoderm was dissected corresponding to about the anterior one-third of the archenteron roof, and the rest was collected as posterior mesoderm. The posterior mesodermal explant was dissected into notochord and somites, following a clearly visible border between the two tissues. The accuracy of all dissection was confirmed by RT-PCR of marker genes.
Coordinated activation of the secretory pathway during notochord formation in the Xenopus embryo.
Specimen part
View SamplesStudies on the early embryonic development of Xenopus laevis contributed much to the understanding of vertebrate patterning. Gastrula stages are of particular interest because establishment of the axis and germ layer formation take place during these stages. While many genes belonging to several signaling pathways including FGF, Wnt and TGF-beta, have been implicated in patterning the gastrula embryo, the hierarchical interactions between these factors are incompletely known. To study this question, we took advantage of microarray technology to create a regional gene expression profile for the Xenopus gastrula.
Coordinated activation of the secretory pathway during notochord formation in the Xenopus embryo.
No sample metadata fields
View SamplesCell cycle sensing of oxidative stress in Saccharomyces cerevisiae by oxidation of a specific cysteine residue in the transcription factor Swi6p.
Cell cycle sensing of oxidative stress in Saccharomyces cerevisiae by oxidation of a specific cysteine residue in the transcription factor Swi6p.
Treatment
View SamplesDNA damage plays a major role in neural cell death by necrosis and/or apoptosis. However, our understanding of the molecular mechanisms of neural cell death remains still incomplete. To acquire a global understanding of the various mediators related to DNA damage-induced neural cell death pathways, we performed a whole genomic wide screen in neural stem cells by using a siRNA library. We identified 80 genes required for DNA damage-induced cell death. 14 genes (17.5%) are directly related to cell death and/or apoptosis. 66 genes have not been previously directly linked to DNA damage-induced cell death. Using an integrated approach with functional and bioinformatics analysis, we have uncovered a molecular network containing several partially overlapping and interconnected pathways and/or protein complexes that are required for DNA damage-induced neural cell death. The identification of the network of neural cell death mediators will greatly enhance our understanding of the molecular mechanisms of neural cell death and provide therapeutic targets for nervous system disorders.
High-Content Genome-Wide RNAi Screen Reveals <i>CCR3</i> as a Key Mediator of Neuronal Cell Death.
Specimen part, Cell line
View SamplesThe goal of this study is to investigate the molecular mechanism of lhx1 on regulation of pronephros formation during the early embryonic development. In the vertebrate embryo the kidney is derived from the intermediate mesoderm. The LIM-class homeobox transcription factor lhx1 is expressed early in the intermediate mesoderm and is one of the first genes to be expressed in the nephric mesenchyme. The animal cap cells can be induced by treatment of activin and retinoic acid to differentiate into pronephros tissue. In this study we investigated the role of Lhx1 in differentiation of pronephros by depleting lhx1 in the organ culture system. We generated the gene expression profile of early pronephros tissue, and demonstrated that expression of genes from all the kidney domains is affected by the absence of lhx1. Taken together our results highlight an essential role for Lhx1 in pronephros formation.
Lhx1 is required for specification of the renal progenitor cell field.
Specimen part, Treatment
View SamplesThe zebrafish pineal gland (epiphysis) is an autonomous clock organ. In addition to being a site of melatonin production, it contains photoreceptor cells and functions as a circadian clock pace maker, making zebrafish a useful model system to study the developmental control of expression of genes associated with melatonin synthesis and photodetection, and the circadian clock. Here we have used DNA microarray technology to study the zebrafish pineal transcriptome. Analysis of gene expression at five different developmental stages (three embryonic and two adult) has revealed a highly dynamic transcriptional profile, revealing many genes that are highly expressed in the pineal gland. Statistical analysis of the data based on Gene Ontology (GO) annotation indicates that many transcription factors and cell cycle genes are highly expressed during embryonic stages, whereas genes dedicated to visual system signal transduction are preferentially expressed in the adult. Furthermore, several genes were identified that exhibit day/night differences in expression. Our data provide a rich source of candidate genes for distinct functions at different stages of pineal gland development.
Transcriptome analysis of the zebrafish pineal gland.
No sample metadata fields
View SamplesThe phenotypically characterized hTERT immortalized porcine olfactory bulb neuroblast cell line (OBGF400) was subjected to an extensive whole genome-scaled expression profile for establishing their use as an in vitro neuronal disease model system.
Transcriptome profile and cytogenetic analysis of immortalized neuronally restricted progenitor cells derived from the porcine olfactory bulb.
Cell line
View SamplesStabilin-1/CLEVER-1 is a multidomain protein present in lymphatic and vascular endothelial cells and in M2 immunosuppressive macrophages. Stabilin-1 functions in scavenging, endocytosis and leukocyte adhesion to and transmigration through the endothelial cells. Overall design: The transcriptome of liver tissue in 5wk old Stab1 knock-out mice was compared to that of corresponding wild type mice
Stabilin-1 expression defines a subset of macrophages that mediate tissue homeostasis and prevent fibrosis in chronic liver injury.
Age, Specimen part, Subject
View SamplesThe transcription factor Snail has been proposed to mediate epithelial-to-mesenchymal transition (EMT) and confer mesenchymal invasive phenotype to epithelial cancer cells
SNAIL-induced epithelial-to-mesenchymal transition produces concerted biophysical changes from altered cytoskeletal gene expression.
Specimen part, Cell line
View Samples