RNA from two murine mesothelioma cell lines (AC29 and AB1) was extracted and hybridized to Affymetrix Microarrays to compare gene expression. Both mesothelioma cell lines were established following intraperitoneal introduction of crocidolite (asbestos) fibers (Davis et al. 1992) in CBA mice (AC29 cell line), and BALB/c mice (AB1).
Depletion of Tumor-Associated Macrophages with a CSF-1R Kinase Inhibitor Enhances Antitumor Immunity and Survival Induced by DC Immunotherapy.
Sex
View SamplesInteractions between Chronic Lymphocytic Leukemia B-cells (CLL B-cells) and the microenvironment (ME) play a major function in the physiopathology of CLL. Extracellular vesicles (EVs) (composed of exosomes and microparticles) have been shown to play an important role in cell communication. EVs, purified by ultracentrifugation from bone marrow mesenchymal stromal cells (BM-MSC) culture, were added to CLL B-cells. Microarray study highlighted 805 differentially expressed genes between CLL-B-cells cultured with and without EVs. Of these, CCL3/4, EGR1/2/3, MYC (involved in BCR pathway) were increased while pro-apoptotic genes like HRK were decreased. We showed for the first time the potential of EVs alone to induce gene expression modifications in CLL B-cell, notably in BCR and apoptosis pathways. We concluded that a substantial part of communication between CLL B-cells and BM-ME is mediated through EV.
Extracellular vesicles of bone marrow stromal cells rescue chronic lymphocytic leukemia B cells from apoptosis, enhance their migration and induce gene expression modifications.
Specimen part, Subject
View SamplesTo understand how haploinsufficiency of progranulin (PGRN) protein causes frontotemporal dementia (FTD), we created induced pluripotent stem cells (iPSC) from patients carrying the GRNIVS1+5G>C mutation (FTD-iPSCs). FTD-iPSCs were fated to cortical neurons, the cells most affected in FTD and known to express PGRN. Although generation of neuroprogenitors was unaffected, their further differentiation into neurons, especially CTIP2-, FOXP2- or TBR1-TUJ1 double positive cortical neurons, was significantly decreased in FTD-neural progeny. Zinc finger nuclease-mediated introduction of PGRN cDNA into the AAVS1 locus corrected defects in cortical neurogenesis, demonstrating that PGRN haploinsufficiency causes inefficient cortical neuron generation. RNAseq analysis confirmed reversal of altered gene expression profile following genetic correction. Wnt signaling pathway, one of the top defective pathways in FTD-iPSC-derived neurons coupled with its reversal following genetic correction, makes it an important candidate. Therefore, we demonstrate for the first time that PGRN haploinsufficiency hampers corticogenesis in vitro. Overall design: We profiled 6 samples: two biological replicates for 3 conditions. Condition 1 consists of neuronal progeny derived from human Embryonic Stem Cells. Condition 2 consists of neuronal progeny derived from induced pluripotent stem cells generated from patients carrying PGRN mutation. Condition 3 consists of neuronal progeny derived from induced pluripotent stem cells generated from patients carrying PGRN mutation, genetically modified to correct the PGRN defect.
Restoration of progranulin expression rescues cortical neuron generation in an induced pluripotent stem cell model of frontotemporal dementia.
No sample metadata fields
View SamplesTo identify the CAR-, PXR- and PPAR-specific genome-wide expression changes, hepatocyte cultures from six individual donors were treated with the prototypical ligands for
Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPARα in primary human hepatocytes.
Sex, Age
View SamplesThe tumor suppressor gene RASSF1A (Ras association domain family protein 1A) coding for a microtubule stabilizing protein is epigenetically silenced in most human cancers. As a binding partner of the kinases MST1 and MST2, the mammalian orthologues of the Drosophila Hippo kinase, RASSF1A is a potential regulator of the Hippo tumor suppressor pathway. RASSF1A shares these properties with the scaffold protein SAV1. The role of this pathway in human cancer has remained enigmatic because Hippo pathway components are rarely mutated. Rassf1a homozygous knockout mice developed liver tumors. However, heterozygous deletion of Sav1 or co-deletion of Rassf1a and Sav1 produced liver tumors with much higher efficiency than single deletion of Rassf1a. Analysis of RASSF1A binding partners by mass spectrometry identified the Hippo kinases MST1, MST2 and the oncogenic IkB kinase TBK1 as the most significantly enriched RASSF1A-interacting proteins. The transcriptome of Rassf1a-/- livers was more deregulated than that of Sav1+/- livers and the transcriptome of Rassf1a-/-, Sav1+/- livers was similar to that of Rassf1a-/- mice. We found that the levels of Tbk1 protein were substantially upregulated in livers lacking Rassf1a, and at the transcript level, factors regulating Tbk1 stability, including Usp2 and Dtx4, were also dysregulated. Furthermore, transcripts of several beta tubulin isoforms were increased in the Rassf1a-deficient liver genotypes presumably reflecting a role of Rassf1a as a tubulin-binding and microtubule-stabilizing protein. Our data suggest a multifactorial role of Rassf1a in suppression of liver carcinogenesis.
Analysis of Liver Tumor-Prone Mouse Models of the Hippo Kinase Scaffold Proteins RASSF1A and SAV1.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide promoter methylation analysis in neuroblastoma identifies prognostic methylation biomarkers.
Treatment
View Samples8 neuroblastoma (NB) cell lines (CLB-GA, IMR-32, SH-SY5Y, N206, CHP-902R, LAN-2, SK-N-AS, SJNB-1) were profiled on the Affymetrix HGU-133plus2,0 platform before and after treatment with DAC (2'-deoxy-5-azacytidine) to investigate the influence on expression after inhibiting DNA-methylation
Genome-wide promoter methylation analysis in neuroblastoma identifies prognostic methylation biomarkers.
Treatment
View SamplesOligodendrocytes (OLs) and myelin are critical for normal brain function and they have been implicated in neurodegeneration. Human neuroimaging studies have demonstrated that alterations in axons and myelin occur early in Alzheimer's Disease (AD) course. However, the molecular mechanism underlying the role of OLs in AD remains largely unknown. In this study, we systematically interrogated OL-enriched gene networks constructed from large-scale genomic, transcriptomic, and proteomic data in human AD postmortem brain samples. These robust OL networks were highly enriched for genes associated with AD risk variants, including BIN1. We corroborated the structure of the AD OL coexpression and gene-gene interaction networks through ablation of genes identified as key drivers of the networks, including UGT8, CNP, MYRF, PLP1, NPC1, and NDGR1. Perturbations of these key drivers not only caused dysregulation in their associated network neighborhoods, but also mimicked pathways of gene expression dysregulation seen in human AD postmortem brain samples. In particular, the OL subnetwork controlled by the AD risk gene PSEN1 was strongly dysregulated in AD, suggesting a potential role of PSEN1 in disrupting the myelination pathway towards the onset of AD. In summary, this study built and systematically validated the first comprehensive molecular blueprint of OL dysregulation in AD, and identified key OL- and myelination-related genes and networks as potential candidate targets for the future development of AD therapies. Overall design: The mouse knockout models have been previously described for each of Ugt8 (Coetzee et al., 1996), Cnp (Lappe-Siefke et al., 2003), and Plp1 (Klugmann et al., 1997). For each of the two conditions studied (control and homozygous knockout mice), five mice of either sex were sacrificed at postnatal day 20 and brains were flashed-frozen until analysis. The frontal cortex (FC) and cerebellum (CBM) were dissected out and individually processed. RNA was isolated using Trizol reagent and processed using Ribo-Zero rRNA removal. RNA-sequencing was performed using the Illumina HiSeq2000 with 100 nucleotide paired-end reads. RNA-sequencing reads were mapped to the mouse genome (mm10, UCSC assembly) using Bowtie (version 2.2.3.0), TopHat (version 2.0.11), and SamTools (version 0.1.19.0) using a read length of 100. Reads were converted to counts at the gene level using HTSeq on the BAM files from TopHat2 using the UCSC known genes data set.
Multiscale network modeling of oligodendrocytes reveals molecular components of myelin dysregulation in Alzheimer's disease.
Specimen part, Subject
View SamplesPleomorphic adenoma gene 1 (PLAG1) encodes a transcription factor involved in cancer and growth. We study the role of PLAG1 in preimplantation embryos using STRT RNA-seq of single embryos from wild type and knockout mothers (both mated with wild type studs). The lack of maternal Plag1 led to delayed mouse 2-cell stage embryo development, compensatory expression of Plag1 from the paternal allele, and dysregulation of 1,089 genes. Half of these genes displayed a pattern of delayed activation and play roles in ribosome biogenesis and protein synthesis. These mouse genes further showed a significant overlap with human EGA genes with similar ontology, and an enrichment of the PLAG1 de novo motif. We conclude that Plag1 affects EGA through retrotransposons influencing ribosomes and protein synthesis, a mechanism that might also explain its roles in cancer and growth Overall design: Single wild type and maternal Plag1 knockout embryos at MII, 2-cell and 8-cell stage development in 14-16 biologicla replicas per developmental stage and genotype.
Pleomorphic Adenoma Gene 1 Is Needed For Timely Zygotic Genome Activation and Early Embryo Development.
Subject
View SamplesAlthough early developmental processes involve cell fate decisions that define the body axes and establish progenitor cell pools, development does not cease once cells are specified. Instead, most cells undergo specific maturation events where changes in the cell transcriptome ensure that the proper gene products are expressed to carry out unique physiological functions. Pancreatic acinar cells mature post-natally to handle an extensive protein synthetic load, establsih organized apical-basal polarity for zymogen granule trafficking, and assemble gap-junctions to perimt efficient cell-cell communication. Despite significant progress in defining transcriptional networks that control initial acinar cell specification and differentiation decisions, little is know regarding the role of transcription factors in the specification and maintenance of maturation events. One candidate maturation effector is MIST1, a secretory cell-restricted transcription factor that has been implicated in controlling regulated exocytosis events in a number of cell types. Embryonic knock-out of MIST1 generates acinar cells that fail to establish an apical-basal organization, fail to properly localize zymogen granule and fail to communicate intra-cellularly, making the exocrine organ highly suceptible to pancreatic diseases.
Induced Mist1 expression promotes remodeling of mouse pancreatic acinar cells.
Age, Specimen part
View Samples