Purpose:To take a comprehensive effort in characterizing the brain vasculature gene expression upon hyperglycemia. Methods: We extracted mRNA from brain microvasculature fragments isolated from a genetic mouse model of hyperglycemia (Ins2-AKITA) and WT mice and analyzed their transcriptome with RNA sequencing The samples were sequenced on an Illumina HiSeq 2500 sequencer at the SNP&SEQ sequencing facility (Science for Life laboratory (SciLifeLab), Uppsala sequencing node). The reads were aligned to the Ensembl mouse gene assembly (NCBIM37) using Tophat2 software (version 2.0.4). The duplicated reads were removed using the picard tool (version 1.92). To identify the genes significantly enriched in the pericyte samples as compared with microvascular samples, statistical tests were performed using the Cufflinks tool (version 2.2.1) Results: Twenty-three genes were significantly regulated in mutant when compared to WT (False Discovery Rate < 0.05) Overall design: The microvascular RNA from two male heterozygous Ins2-AKITA mice and three littermate wild-type controls were processed and sequenced on the Illumina HiSeq 2500 platform in the sequencing facility in Uppsala University.
Prolonged systemic hyperglycemia does not cause pericyte loss and permeability at the mouse blood-brain barrier.
Sex, Specimen part, Subject
View SamplesSequencing of 5'' ends of RNA molecules from control and exosome-depleted S2 cells. Overall design: CAGE library construction from RNA extracted from control and exosome-depleted cells.
Transcription start site analysis reveals widespread divergent transcription in D. melanogaster and core promoter-encoded enhancer activities.
Subject
View SamplesDengue viruses cause two severe diseases that alter vascular fluid barrier functions, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). While the mechanisms that lead to vascular permeability are unknown, the endothelium plays a central role in regulating fluid and cellular efflux from capillaries. Thus, dysregulation of endothelial cells functions by dengue virus infection may contribute to pathogenesis and severe disease.
Endothelial cells elicit immune-enhancing responses to dengue virus infection.
Specimen part, Time
View SamplesWe report RNA-seq data obtained from FACS-isolated live neurons at third instar larval or P14 pupal stage, and from BG3 cells. RNA from neurons with RNAi-based loss of shep or GFP control is used to construct stranded RNA-seq library. RNA from BG3 cells treated with dsRNA targeting shep or GFP is used to construct RNA-seq library. Overall design: RNA-seq data of loss-of-shep neurons and control neurons in larval and pupal stages, and from shep-depleted or control BG3 cells.
Shep regulates <i>Drosophila</i> neuronal remodeling by controlling transcription of its chromatin targets.
Specimen part, Cell line, Treatment, Subject
View SamplesChromatin insulators are DNA-protein complexes situated throughout the genome capable of demarcating independent transcriptional domains. Previous studies point to an important role for RNA in gypsy chromatin insulator function in Drosophila; however, the identity of these putative insulator-associated RNAs is not currently known. Here we utilize RNA-immunoprecipitation and high throughput sequencing (RIP-seq) to isolate RNAs stably associated with gypsy insulator complexes. Strikingly, these RNAs correspond to specific sense-strand, spliced, and polyadenylated mRNAs, including two insulator protein transcripts. In order to assess the functional significance of these associated mRNAs independent of their coding function, we expressed untranslatable versions of these transcripts in developing flies and observed both alteration of insulator complex nuclear localization as well as improvement of enhancer-blocking activity. Together these data suggest a novel, noncoding mechanism by which certain mRNAs contribute to chromatin insulator function. Overall design: RIP-seq of insulator proteins with different library preparations and multiple biological replicates
Messenger RNA is a functional component of a chromatin insulator complex.
Subject
View SamplesHuman iPS cells derived from normal and Fragile-X fibroblasts in order to assess the capability of Fragile-X iPS cells to be used as a model for different aspects of Fragile-X syndrome. Microarry analysis used to compare global gene expression between human ES cells, the normal and the mutant iPS cells and the original fibroblasts, to demonstrate that the overall reprogramming process succeeded, and that the FX-iPS cells are fully reprogrammed cells.
Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells.
Specimen part, Disease, Cell line
View SamplesIn this study, we analyzed the impact of a mutation in the wrn-1 gene compared to wild type worms and the dietary supplementation of vitamin C on the global mRNA expression of the whole C. elegans by the RNA-seq technology. Overall design: Whole C. elegans mRNA profiles at the L4 stage of wild type and wrn-1(gk99) mutant animals treated with or without 10 mM ascorbate were generated by deep sequencing, in triplicate, using the HiSeq 2000 machine form Illumina. Detailed statistics on the quality of the reads were calculated with FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The 50 base pairs raw sequences were aligned on the C. elegans ce10/W220 genome with TopHat using the Ensembl annotations provided with the Illumina iGenomes. The htseq-count software (http://www-huber.embl.de/users/anders/HTSeq) was used to count the number of reads aligned to each gene. These counts were then normalized relative to the sequencing depth with DESeq.
Expression profile of Caenorhabditis elegans mutant for the Werner syndrome gene ortholog reveals the impact of vitamin C on development to increase life span.
Specimen part, Treatment, Subject
View SamplesCarbonic anhydrase 1 (Car1), an early specific marker of the erythroid differentiation, has been used to distinguish fetal and adult erythroid cells since its production closely follows the - to -globin transition, but the molecular mechanism underlying transcriptional regulation of Car1 is unclear. Here, we show that Car1 mRNA decreases significantly when erythroid differentiation is induced in MEL cells. The Ldb1 protein complex including GATA1/SCL/LMO2 binds to the Car1 promoter in uninduced cells and reduced enrichment of the complex during differentiation correlates with loss of Car1 expression. Knockdown of Ldb1 results in a reduction of Ser2 phosphorylated RNA Pol II and Cdk9 at the Car1 promoter region, suggesting that Ldb1 is required for recruitment of Pol II as well as the transcription regulator P-TEFb to enhance elongation of Car1 transcripts. Taken together, these data show that Ldb1 forms a regulatory complex to maintain Car1 expression in erythroid cells.
Ldb1 regulates carbonic anhydrase 1 during erythroid differentiation.
Specimen part
View SamplesInterferon is effective at inducing complete remissions in patients with Chronic Myelogenous Leukemia (CML), and evidence supports an immune mechanism. Here we show that the Type I Interferons (alpha and beta) regulate expression of the Interferon consensus sequence binding protein (ICSBP) in bcr-abl transformed cells and as shown previously for ICSBP, induce a vaccine-like immunoprotective effect in a murine model of bcr-abl induced leukemia. We identify the chemokines CCL6 and CCL9 as genes prominently induced by the Type I Interferons and ICSBP, and demonstrate that these immunomodulators are required for the immunoprotective effect of ICSBP expression. Insights into the role of these chemokines in the anti-leukemic response of interferons suggest new strategies for immunotherapy of CML.
ICSBP-mediated immune protection against BCR-ABL-induced leukemia requires the CCL6 and CCL9 chemokines.
No sample metadata fields
View SamplesA time course of infection of the alphavirus Sindbis virus (SINV) was used to investigate the presence of viral specific vsRNA and the changes in miRNAs profiles in human embryonic kidney 293 cells (HEK293) by high throughput DNA sequencing. Deep sequencing of small RNAs early in SINV infection (4 and 6 hpi) showed low abundance (0.8%) of viral specific RNAs (vsRNAs) , with a random uniform distribution not typical of Dicer products, suggesting they arise from non-specific degradation. Sequencing showed little variation of cellular microRNAs (miRNAs) at 4 and 6 hpi compared to uninfected cells. Twelve miRNAs exhibiting some minor differential expression by sequencing, showed insignificant modulation by Northern blot analysis. Overall design: RNA was isolated from mock infected and SINV inoculated HEK 293 cells at 4hpi and 6hpi cDNA libraries were generated for the small RNA (sRNA) content of the cells and sequenced using Illumina GA II, which yielded between 29.1M and 30.5M reads per sample
Small RNA analysis in Sindbis virus infected human HEK293 cells.
Specimen part, Cell line, Subject
View Samples