In humans, the most common sex chromosomal disorder is Klinefelter syndrome (KS), caused by the presence of one or more extra X-chromosomes. The KS patients display a diverse adult phenotype with increased height, gynaecomastia, and hypergonadotropic hypogonadism as the most common symptoms. Men with KS are almost always infertile due to testicular degeneration, which accelerates during puberty. Very few studies investigated when the germ cell loss begins and whether it is caused by dysgenetic fetal development of the testes. We investigated a series of fetal KS testis tissue samples and found a marked reduction in MAGE-A4-positive pre-spermatogonia in the developing KS gonads compared to controls, indicating a failure of the gonocytes to differentiate into pre-spermatogonia. Transcriptome analysis by RNA sequencing of formalin-fixed and paraffin embedded gonads originating from 4 fetal KS samples and 5 age- and cellularity-matched controls revealed 211 differentially expressed transcripts in the fetal KS testis. We found a significant enrichment of upregulated X-chromosomal transcripts and validated the expression of the pseudoautosomal region 1 (PAR1) gene, AKAP17A. Moreover, we found enrichment of long non-coding RNAs in the KS testes (e.g. LINC01569 and RP11-485F13.1). In conclusion, our data indicates that the testicular phenotype observed among adult men with KS is initiated already in fetal life by failure of the gonocyte differentiation into pre-spermatogonia, which could be due to aberrant expression of long non-coding RNAs. Overall design: Includes a total of 9 samples. 4 fetal Klinefelter and 5 age-matched controls testis samples
Transcriptome profiling of fetal Klinefelter testis tissue reveals a possible involvement of long non-coding RNAs in gonocyte maturation.
Subject
View SamplesBackground: Avian infectious bronchitis (IB) is an acute and highly contagious disease of the upper-respiratory tract caused by infectious bronchitis virus (IBV). Understanding the molecular mechanisms involved in the interaction between innate and adaptive immune responses to IBV infection is a crucial element for further improvements in strategies to control IB. To this end, two chicken lines, selected for high and low serum concentration of mannose-binding lectin (MBL), a soluble pattern recognition receptor, were studied. In total, 32 birds from each line (designated L10H for high and L10L for low MBL serum concentration, respectively) were used. Sixteen birds from each line were infected with IBV at 3 weeks of age and sixteen birds were left uninfected. Eight uninfected and eight infected birds from each line were euthanized at 1 and 3 weeks post infection. RNA sequencing was performed on spleen samples from all 64 birds used in the experiment. Differential gene expression analysis was performed for four comparisons: L10L line versus L10H line for uninfected birds at weeks 1 and 3, respectively, and L10L line versus L10H line for infected birds at weeks 1 and 3, respectively. Functional analysis based on the differentially expressed genes was performed using Gene Ontology (GO) Immune System Process terms specific for Gallus gallus. Results: Comparing uninfected L10H and L10L birds, we identified 1698 and 1424 differentially expressed (DE) genes at weeks 1 and 3, respectively. For the IBV-infected birds, 1934 and 866 DE genes were identified between the two lines at weeks 1 and 3, respectively. In both cases DE genes had FDR-adjusted p-value <0.05. The two most enriched GO terms emerging from the comparison of uninfected birds between the two lines were “Lymphocyte activation involved in immune response” (GO:0002285) and “Somatic recombination of immunoglobulin genes involved in immune response” (GO:0002204) at weeks 1 and 3, respectively. When comparing IBV-infected birds between the two lines, the most enriched GO terms were “Alpha-beta T cell activation” (GO:0046631) and “Positive regulation of leukocyte activation” (GO:0002696) at weeks 1 and 3, respectively. Conclusion: Healthy birds from the two lines showed significant differences in expression profiles for subsets of both adaptive and innate immunity-related genes, whereas comparison of the IBV-infected birds from the two lines showed differences in expression of immunity-related genes involved in T cell activation and proliferation. The observed transcriptome differences between the two lines indicate that selection for MBL had a much wider effect than solely on serum MBL concentration, and in addition influenced the innate and adaptive immune responses. Future research will focus on identifying signatures of selection in order to further understand molecular pathways be responsible for differences between the two lines as well as for efficient IBV immune protection. Overall design: For this study 64 spleen samples were harvested and used for RNA sequencing from birds originating from the two Aarhus University inbred lines, L10H and L10L. The birds were infected at age of 3 weeks and they were sacrificed 1 and 3 weeks post infection by cervical dislocation and spleen samples were collected. At both time points, eight samples from the two lines, L10H and line L10L, from each group (uninfected and infected) were collected.
RNA sequencing-based analysis of the spleen transcriptome following infectious bronchitis virus infection of chickens selected for different mannose-binding lectin serum concentrations.
Specimen part, Subject, Time
View SamplesIn humans, the most common sex chromosomal disorder is Klinefelter syndrome (KS), caused by the presence of one or more extra X-chromosomes. The KS patients display a diverse adult phenotype with increased height, gynaecomastia, and hypergonadotropic hypogonadism as the most common symptoms. Men with KS are almost always infertile due to testicular degeneration, which accelerates during puberty. Very few studies investigated the global gene expression analysis of adult KS testes and, more importantly, which cell types the differentially expressed transcripts originate from. Transcriptome analysis by RNA sequencing of fixed and paraffin embedded testes originating from 3 adult KS samples and 3 adult cellularity-matched controls revealed 236 differentially expressed transcripts in the adult KS testis. To examine the cellular origin of the differentially expressed transcripts, transcriptome profiling was also carried out on 4 testes with Sertoli Cell-Only and 4 testes with full spermatogenesis. Also, pre-pubertal KS and controls were RNA-sequenced. Overall design: Includes a total of 22 testis samples. 3 adult Klinefelter, 3 Klinefelter-like, 4 Sertoli Cell-Only, 4 with full spermatogenesi, 4 pre-pubertal Klinefelter and 4 pre-pubertal controls
Transcriptome analysis of the adult human Klinefelter testis and cellularity-matched controls reveals disturbed differentiation of Sertoli- and Leydig cells.
Specimen part, Subject
View SamplesWe performed a comparative, whole-transcriptome, analysis to identify stress-induced genes and relevant pathways that may be affected by sleep deprivation. Methods: One day following 12 hours of Paradoxical Sleep Deprivation (PSD), mice were restrained for 20 minutes. Gene expression changes in the pituitary were assessed via RNA-Seq and Gene Ontology in PSD and/or restrained groups compared to controls. Results: We show that restraint triggers transcriptional responses involved in hormone secretion, the glucocorticoid response, and apoptosis in both sexes, with 285 differentially expressed genes in females and 93 in males. When PSD preceded restraint stress, the numbers of differentially expressed genes increased to 613 in females and 580 in males. The pituitary transcriptome of restraint+PSD animals was enriched for microglia and macrophage proliferation, cellular response to corticosteroids, and apoptosis, among others. Finally, we show sex-specific differences in restraint-induced genes following PSD. Conclusion: The results indicate striking differences in the male and female stress-induced transcriptome, as well as in the PSD-induced changes. When PSD preceded the restraint stress challenge, the effects on the pituitary transcriptome were striking. While the male and female PSD + restraint-induced transcriptome was similar, we detected remarkable differences, perhaps indicating different strategies used by each sex to cope with challenges to homeostasis. We hope that these data illuminate future research elucidating how sleep deprivation impacts the vital response to stress and motivate the analysis of male and female subjects when designing experiments. Overall design: Gene expression changes in the pituitary were assessed via RNA-Seq and Gene Ontology in Paradoxical Sleep Deprivation and/or restrained groups compared to controls.
Sleep Deprivation Alters the Pituitary Stress Transcriptome in Male and Female Mice.
Sex, Age, Specimen part, Cell line, Treatment, Subject
View SamplesThe whole blood was collected pre-treatment from rheumatoid arthritis patients starting the anti_TNF therapy. All patients were nave to anti_TNFs. The disease activity was measured using the DAS28 score at the pre-treatment visit1 (DAS28_v1) and 14 weeks after treatment visit3 (DAS28_v3). The response to the therapy was evaluated using the EULAR [European League Against Rheumatism] definition of the response. The objective of the data analysis was to identify gene expression coorelating with response as well as to identify genes that differentiate responders versus non-responders pre-treatment. The results of this investigation identified 8 trainscripts that predict responders vs. non-responders with 89% accuracy.
Convergent Random Forest predictor: methodology for predicting drug response from genome-scale data applied to anti-TNF response.
Specimen part, Disease, Disease stage
View SamplesSequencing of 5'' ends of RNA molecules from control and exosome-depleted S2 cells. Overall design: CAGE library construction from RNA extracted from control and exosome-depleted cells.
Transcription start site analysis reveals widespread divergent transcription in D. melanogaster and core promoter-encoded enhancer activities.
Subject
View SamplesPBRM1 was found to be mutated in a high percentage of clear cell RCCs. We performed knockdown of PBRM1 via siRNA and compared with scrambled control in three different RCC cell lines.
Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma.
Specimen part, Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes.
No sample metadata fields
View SamplesSystematic somatic mutation screening of 4000 genes in human clear cell renal cell carcinoma. Information on corresponding somatic mutations in each sample can be found at http://www.sanger.ac.uk/genetics/CGP/Studies/.
Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes.
No sample metadata fields
View SamplesDengue viruses cause two severe diseases that alter vascular fluid barrier functions, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). While the mechanisms that lead to vascular permeability are unknown, the endothelium plays a central role in regulating fluid and cellular efflux from capillaries. Thus, dysregulation of endothelial cells functions by dengue virus infection may contribute to pathogenesis and severe disease.
Endothelial cells elicit immune-enhancing responses to dengue virus infection.
Specimen part, Time
View Samples