Assess the efficacy of trabectedin in two DLBCL cell lines
Trabectedin is a novel chemotherapy agent for diffuse large B cell lymphoma.
Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of a gene expression driven progression pathway in myxoid liposarcoma.
Sex, Age, Specimen part
View SamplesFUS-CHOP and EWS-CHOP balanced translocations characterize myxoid liposarcoma which encompasses myxoid (ML) and round cell (RC) variants initially believed to be distinct diseases. Currently, myxoid and RC liposarcoma are regarded to represent the well differentiated and the poorly differentiated ends, respectively, within spectrum of myxoid liposarcoma where the fusion proteins blocking lipogenic differentiation play a role in tumor initiation while molecular determinants associated to progression to RC remain poorly understood. Activation of AKT pathway sustained by PIK3CA and PTEN mutations and growth factor receptor signalling such as RET and IGF1R have been recently correlated with the increasing of aggressiveness and RC. Aim of the present study is to elucidate molecular events involved in driving round cell progression analyzing two small series of MLS selected to be representative of the two end of the gamut: the pure myxoid (0% of RC component) and RC with high cellular component (80%).
Identification of a gene expression driven progression pathway in myxoid liposarcoma.
Sex, Age, Specimen part
View SamplesEpigenetic modifications determine the structure and regulation of eukaryotic genomes and define key signatures of cell lineage specification. Technologies that facilitate the targeted manipulation of epigenetic marks could be used to precisely control cell phenotype or interrogate the relationship between the epigenome and transcriptional control. Here we have generated a programmable acetyltransferase based on the CRISPR/Cas9 gene regulation system, consisting of the nuclease-null dCas9 protein fused to the catalytic core of the human acetyltransferase p300. This fusion protein catalyzes acetylation of histone H3 lysine 27 (H3K27) at its target sites, leading to robust transcriptional activation of target genes from promoters, proximal enhancers, and distal enhancers. In contrast to conventional dCas9-based activators, the acetyltransferase fusion effectively activated genes from enhancer regions and with individual guide RNAs. The core p300 domain was also portable to other programmable DNA-binding proteins. This technology enables the targeted perturbation of native epigenetic architecture and will be useful for reprogramming the epigenome for applications in genomics, genetics, disease modeling, and manipulating cell fate. Overall design: HEK293T cells were transfected in triplicate with plasmids expressing synthetic transcription factors. The synthetic TFs were either (a) dCas9-VP64 fusion protein and a targeting guide RNA (gRNA), or (b)dCas9-p300 fusion protein containing the catalytic domain of p300 and a targeting guide RNA (gRNA). As a control, cells were transfected with plasmids expressing dCas9 alone and dCas9 fused with a aceryltransferase null mutatnt form of the p300 catalytic domain (D1399Y, as in text). After transfection, RNA-seq was used to identify differential expressin at on-target and off-target sites.
Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers.
No sample metadata fields
View SamplesTriple negative breast cancer (TNBC) represents a challenging tumor type due to their poor prognosis and limited treatment options. It is well recognize that clinical and molecular heterogeneity of TNBC is driven in part by mRNA and lncRNAs. To stratify TNBCs, we profiled mRNAs and lncRNA in 158 adjuvant TNBC tumors using an Affymetrix microarray platform. Lehmann clustering analysis allowed us to identify TNBC subtypes featuring unique lncRNA expression patterns, disease free and overall survival rates and particular gene ontology enrichments (performed with GSEA algorithm).
Loss of function of miR-342-3p results in MCT1 over-expression and contributes to oncogenic metabolic reprogramming in triple negative breast cancer.
Specimen part
View SamplesTriple negative breast cancer (TNBC) represents a challenging tumor type due to their poor prognosis and limited treatment options. It is well recognize that clinical and molecular heterogeneity of TNBC is driven in part by mRNA and lncRNAs. To stratify TNBCs, we profiled mRNAs and lncRNA in 158 adjuvant TNBC tumors using an Affymetrix microarray platform. Lehmann clustering analysis allowed us to identify TNBC subtypes featuring unique lncRNA expression patterns, disease free and overall survival rates and particular gene ontology enrichments (performed with GSEA algorithm).
Loss of function of miR-342-3p results in MCT1 over-expression and contributes to oncogenic metabolic reprogramming in triple negative breast cancer.
Specimen part
View SamplesThe two vertebrate Gsk-3 isoforms, Gsk-3a and Gsk-3b, are encoded by distinct genetic loci and exhibit mostly redundant function in murine embryonic stem cells (ESCs). Here we report that deletion of both Gsk-3a and Gsk-3b in mouse ESCs results in misregulated expression of imprinted genes and hypomethylation of corresponding imprinted loci. Treatment of wild-type ESCs with small molecule inhibitors of Gsk-3 phenocopies the DNA hypomethylation of imprinted loci observed in Gsk-3 null ESCs. We provide evidence that DNA hypomethylation in Gsk-3 null ESCs is due to a reduction in the levels of the de novo DNA methyltransferase, Dnmt3a2.
Phosphatidylinositol 3-kinase (PI3K) signaling via glycogen synthase kinase-3 (Gsk-3) regulates DNA methylation of imprinted loci.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genetically Engineered iPSC-Derived FTDP-17 MAPT Neurons Display Mutation-Specific Neurodegenerative and Neurodevelopmental Phenotypes.
Specimen part, Treatment
View SamplesThe development of an effective therapy against tauopathies like Alzheimers disease (AD) and frontotemporal dementia (FTD) remains challenging, partly due to limited access to fresh brain tissue, the lack of translational in vitro disease models and the fact that underlying molecular pathways remain to be deciphered. Several genes play an important role in the pathogenesis of AD and FTD, one of them being the MAPT gene encoding the microtubule-associated protein tau. Over the past few years, it has been shown that induced pluripotent stem cells (iPSC) can be used to model various human disorders and can serve as translational in vitro tools. Therefore, we generated iPSC harboring the pathogenic FTDP-17 (frontotemporal dementia and parkinsonism linked to chromosome 17) associated mutations IVS10+16 with and without P301S in MAPT using Zinc Finger Nuclease technology. Whole transcriptome analysis of MAPT IVS10+16 neurons reveals neuronal subtype differences, reduced neural progenitor proliferation potential and aberrant WNT signaling. Notably, all phenotypes were recapitulated using patient-derived neurons. Finally, an additional P301S mutation causes an increased calcium bursting frequency, reduced lysosomal acidity and tau oligomerization.
Genetically Engineered iPSC-Derived FTDP-17 MAPT Neurons Display Mutation-Specific Neurodegenerative and Neurodevelopmental Phenotypes.
Treatment
View SamplesThe development of an effective therapy against tauopathies like Alzheimers disease (AD) and frontotemporal dementia (FTD) remains challenging, partly due to limited access to fresh brain tissue, the lack of translational in vitro disease models and the fact that underlying molecular pathways remain to be deciphered. Several genes play an important role in the pathogenesis of AD and FTD, one of them being the MAPT gene encoding the microtubule-associated protein tau. Over the past few years, it has been shown that induced pluripotent stem cells (iPSC) can be used to model various human disorders and can serve as translational in vitro tools. Therefore, we generated iPSC harboring the pathogenic FTDP-17 (frontotemporal dementia and parkinsonism linked to chromosome 17) associated mutations IVS10+16 with and without P301S in MAPT using Zinc Finger Nuclease technology. Whole transcriptome analysis of MAPT IVS10+16 neurons reveals neuronal subtype differences, reduced neural progenitor proliferation potential and aberrant WNT signaling. Notably, all phenotypes were recapitulated using patient-derived neurons. Finally, an additional P301S mutation causes an increased calcium bursting frequency, reduced lysosomal acidity and tau oligomerization.
Genetically Engineered iPSC-Derived FTDP-17 MAPT Neurons Display Mutation-Specific Neurodegenerative and Neurodevelopmental Phenotypes.
Specimen part, Treatment
View Samples