Atopic dermatitis, a chronic inflammatory skin disease with increasing prevalance, is closely associated with skin barrier defects. A cytokine related to disease severity and inhibition of keratinocyte differentiation is IL-31. To identify its molecular targets, IL-31-dependent gene expression was determined in 3-dimensional organotypic skin models.
Control of the Physical and Antimicrobial Skin Barrier by an IL-31-IL-1 Signaling Network.
Sex, Specimen part
View SamplesGene expression of livers with hepatocyte-specific deletion of Hmgb1 was compared to control livers with floxed Hmgb1
High-mobility group box 1 is dispensable for autophagy, mitochondrial quality control, and organ function in vivo.
Sex, Specimen part
View Samples5-aminolevulinic acid (ALA) is the common precursor of all biological synthezised tetrapyrroles. Inhibition of ALA synthesis results in decreased amounts of chlorophylls, heme, siroheme and phytochrome. It was previously shown that 4 out of 5 Arabidopsis mutants uncoupling nuclear gene expression from the physiological state of the chloroplast are affected in plant tetrapyrrole biosynthesis. It is common to all four mutants to show a reduced ALA formation.
Evidence for a Contribution of ALA Synthesis to Plastid-To-Nucleus Signaling.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Tissue-specific NETs alter genome organization and regulation even in a heterologous system.
Cell line, Treatment
View SamplesThe nuclear transmembrane proteins (NETs) NET29/TMEM120A, NET39/PPAPDC3 and NET47/TM7SF2 are able to reposition chromosomes towards/away from the nuclear envelope when overexpressed or knocked down in HT1080 cells. In this study we wanted to investigate the transcriptome changes after transfection of the full length NETs or a nucleoplasmic soluble fragment that does not localise to the nuclear envelope.
Tissue-specific NETs alter genome organization and regulation even in a heterologous system.
Cell line, Treatment
View SamplesTo elucidated through an unbiased manner which genes and pathways are differentially regulated during mouse colonic inflammation followed by a tissue regeneration phase. In particular, we took advantage of the widely used dextran sodium sulfate (DSS)-induced model of colitis. This model is one of the few characterized by a phase of damage followed by a phase of regeneration. Therefore, this model gave the possibility to identify also sets of genes essential in the regeneration phase, a key step towards the resolution of the inflammation. In short, mice were exposed to DSS in the drinking water for 7 days, then allowed to recover for the following 7 days. During this period, we collected colonic tissue samples every second day to then be analyzed by RNA sequencing (RNA-seq). Next, we performed a RNA-seq analysis from colonic samples throughout the experiment and computed differentially expressed genes (DEGs) taking the complete kinetics of expression into consideration for p-value estimation using EdgeR. Overall design: C57BL/6J female mice were treated with 2.5% DSS in order to induce colinic inflammation. 2-3 animals were sacrificed at different time points when the colonic tissue was collected.
Conserved transcriptomic profile between mouse and human colitis allows unsupervised patient stratification.
Sex, Specimen part, Cell line, Subject
View SamplesIn our studies we were searching for the new factors engaged in mitochondrial nucleic acids metabolism under stress conditions in humans. Quantitative proteomic approach revealed C6orf203 protein as a potential new factor engaged in response to perturbed mitochondrial gene expression. We showed that C6orf203 is a mitochondrial RNA binding protein which is able to rescue diminished mitochondrial transcription in stress conditions. Overall design: The dataset corresponds to RNAseq studies and comprises experiment performed in triplicate. The aim of this study was to examine the influence of C6orf203 silencing on mitochondrial transcriptome. To this end we engineered two stable cell lines with the use of human 293 Flp-In T-Rex cells as parental. First cell line inducible expressed miRNAs silencing endogenous copy of C6orf203 gene while second one expressed additionally transgenic version of FLAG-tagged C6orf203 which contained silent mutations causing insensitivity to miRNA. We also analyzed RNA isolated from parental 293 Flp-In T-Rex cells. RNAseq libraries were prepared with the use of strand-specific library preparation procedures. RNAs were random fragmented and reverse transcribed using random oligomers as primers (dUTP-based protocol, see PMID: 29590189, PMID: 22609201; this pipeline enables analysis of RNAs (> ~100 nucleotides)). RNA was isolated from unfractionated cells using TRI-Reagent. Before preparation of the libraries total RNA was subjected to depletion of nuclear-encoded rRNAs (Ribo-Zero rRNA Removal Kit (Human/Mouse/Rat), Epicenter). Libraries were sequenced with the help of Illumina sequencing platform.
Quantitative proteomics revealed C6orf203/MTRES1 as a factor preventing stress-induced transcription deficiency in human mitochondria.
Specimen part, Subject
View SamplesIn a whole-transcriptome study, cellular responses of DCs confronted with the fungi A. fumigatus, C. albicans or the bacterial cell wall component LPS were investigated. Therefore DCs of four independent donors were analyzed after 6 hours co-culture with A. fumigatus, C. albicans and LPS by Affymetrix whole genome expression arrays. In general, transcriptomic analysis revealed a clustering of the A. fumigatus and C. albicans stimulated DCs. However, LPS and fungi-dependent gene expression showed more common similarities compared to the untreated control. Stimulation with LPS induced a differential regulation of 2793 genes after 6h, while confrontation with A. fumigatus and C. albicans resulted in 743 and 974 differentially regulated genes, respectively. Kruppel-like factor 4 (KLF4) was identified as the only transcription factor that was down-regulated in DCs by both fungi but induced by stimulation with LPS.
Krüppel-like Factor 4 modulates interleukin-6 release in human dendritic cells after in vitro stimulation with Aspergillus fumigatus and Candida albicans.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Constrained release of lamina-associated enhancers and genes from the nuclear envelope during T-cell activation facilitates their association in chromosome compartments.
Specimen part, Time
View SamplesActivation of T-cells induces dramatic changes in genome organisation and gene transcription. Here we identify changes in transcriptional profiles at 8h, 24h and 48 post activation
Constrained release of lamina-associated enhancers and genes from the nuclear envelope during T-cell activation facilitates their association in chromosome compartments.
Specimen part, Time
View Samples