This SuperSeries is composed of the SubSeries listed below.
Diurnal regulation of RNA polymerase III transcription is under the control of both the feeding-fasting response and the circadian clock.
Specimen part
View SamplesRNA polymerase III (pol III) synthesizes short non-coding RNAs, many of which, including tRNAs, Rpph1 RNA, Rn5s rRNA, and Rmrp RNA, are essential for translation. Accordingly, pol III activity is tightly regulated with cell growth and proliferation by factors such as MYC, RB1, TRP53, and MAF1. MAF1 is a repressor of pol III transcription whose activity is controlled by phosphorylation; in particular, it is inactivated through phosphorylation by mTORC1 kinase, a sensor of nutrient availability. Pol III regulation is thus sensitive to environmental cues, yet a diurnal profile of pol III transcription activity is so far lacking. Here we document pol III occupancy of its target genes in mouse liver during the diurnal cycle and show that pol III occupancy rises before the onset of the night, stays high during the night, when mice normally ingest food and when translation is increased, and decreases in daytime. By comparing diurnal pol III occupancy in wild-type mice, arrhythmic mice owing to inactivation of the Arntl gene, mice fed at regular intervals during both night and day, and mice lacking the Maf1 gene, we show that whereas higher pol III occupancy during the night reflects a MAF1-dependent response to feeding, the rise of pol III occupancy before the onset of the night reflects a circadian clock-dependent response. Thus, pol III transcription during the diurnal cycle is regulated both in response to nutrients and by the circadian clock, which allows anticipatory pol III transcription.
Diurnal regulation of RNA polymerase III transcription is under the control of both the feeding-fasting response and the circadian clock.
Specimen part
View SamplesThis study is a follow-up to GSE35790.
Transcriptional regulatory logic of the diurnal cycle in the mouse liver.
Sex, Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles.
Specimen part
View SamplesCyclic regulatory systems are ubiquitous in cells and tissues. In the liver rhythms in mRNA expression are determined by the homeostatic regulation that operates on daily circumstances. In particular the specific response to nutrients, as well as systemic and peripheral circadian oscillators, contribute to the set up of the hepatic homeostasis at different phases of the day. In this series we used microarrays to detail the global program of gene expression in the mouse liver under physiological daily variations, determined by both the feeding and the circadian cycles.
Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease.
Sex, Age, Specimen part, Subject
View SamplesEpigenetic alterations may provide important insights into gene-environment interaction in inflammatory bowel disease (IBD). Here we observe epigenome-wide DNA methylation differences in 240 newly-diagnosed IBD cases and 190 controls. These include 439 differentially methylated positions (DMPs) and 5 differentially methylated regions (DMRs), which we study in detail using whole genome bisulphite sequencing. We replicate the top DMP (RPS6KA2) and DMRs (VMP1, ITGB2, TXK) in an independent cohort.
Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease.
Sex, Age, Specimen part
View SamplesWe present primary results from the Sequencing Quality Control (SEQC) project, coordinated by the United States Food and Drug Administration. Examining Illumina HiSeq, Life Technologies SOLiD and Roche 454 platforms at multiple laboratory sites using reference RNA samples with built-in controls, we assess RNA sequencing (RNA-seq) performance for sequence discovery and differential expression profiling and compare it to microarray and quantitative PCR (qPCR) data using complementary metrics. At all sequencing depths, we discover unannotated exon-exon junctions, with >80% validated by qPCR. We find that measurements of relative expression are accurate and reproducible across sites and platforms if specific filters are used. In contrast, RNA-seq and microarrays do not provide accurate absolute measurements, and gene-specific biases are observed, for these and qPCR. Measurement performance depends on the platform and data analysis pipeline, and variation is large for transcriptlevel profiling. The complete SEQC data sets, comprising >100 billion reads (10Tb), provide unique resources for evaluating RNA-seq analyses for clinical and regulatory settings.
A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium.
No sample metadata fields
View SamplesHuntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded stretch of CAG trinucleotide repeats that results in neuronal dysfunction and death. We made induced pluripotent stem cell (iPSC) lines from HD patients and controls. Though no obvious effects of the CAG expansion on reprogramming or subsequent neural stem cell (NSC) production were seen, HD-NSCs showed CAG expansion-associated gene expression patterns and, upon differentiation, changes in electrophysiology, metabolism, cell adhesion, and ultimately an increased risk of cell death for both medium and longer CAG repeat expansions, with some deficits greater in cells from longer repeat HD NSCs. The HD180 lines were more vulnerable than control lines to cellular stressors and BDNF withdrawal using a range of assays across consortium laboratories. This HD iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in HD and provides a novel human stem cell platform for screening new candidate therapeutics.
Induced pluripotent stem cells from patients with Huntington's disease show CAG-repeat-expansion-associated phenotypes.
Specimen part, Disease, Disease stage
View SamplesIn order to study parent-of-origin effects on gene expression, we performed RNAseq analysis (100bp single end reads) of 165 children who formed part of mother/father/child trios where genotype data was available from the HapMap and/or 1000 Genomes Projects. Based on phased genotypes at heterozygous SNP positions, we generated allelic counts for expression of the maternal and paternal alleles in each individual. This analysis reveals significant bias in the expression of the parental alleles for dozens of genes, including both previously known and novel imprinted transcripts. Overall design: This submission contains RNAseq data from 165 children from mother/father/child trios studied as part of the 1000 genomes and/or HapMap projects. We provide raw fastq format reads, and processed read counts per gene. Allelic count information can be provided by directly contacting the authors.
RNA-Seq in 296 phased trios provides a high-resolution map of genomic imprinting.
Specimen part, Cell line, Subject
View Samples