Discoid lupus erythematosus (DLE) is the most common skin manifestation of lupus. Despite its high frequency in systemic lupus in addition to cases without extracutaneous manifestations, targeted treatments for DLE are lacking, likely because of a dearth of knowledge of the molecular landscape of DLE skin. Here, we profiled the transcriptome of DLE skin in order to identify signaling pathways and cellular signatures that may be targeted for treatment purposes. Further comparison of the DLE transcriptome with that of psoriasis, a useful reference given our extensive knowledge of molecular pathways in this disease, provided a framework to identify potential therapeutic targets. Although a growing body of data support a role for IL-17 and T helper type 17 (Th17) cells in systemic lupus, we show a relative enrichment of IFN--associated genes without that for IL-17-associated genes in DLE. Extraction of T cells from the skin of DLE patients identified a predominance of IFN--producing Th1 cells and an absence of IL-17-producing Th17 cells, complementing the results from whole-skin transcriptomic analyses. These data therefore support investigations into treatments for DLE that target Th1 cells or the IFN- signaling pathway.
Dominant Th1 and minimal Th17 skewing in discoid lupus revealed by transcriptomic comparison with psoriasis.
Specimen part, Subject
View SamplesWe sought to characterize delayed-type hypersensitivity (DTH) responses elicited by topical hapten DPCP in normal human skin
Molecular characterization of human skin response to diphencyprone at peak and resolution phases: therapeutic insights.
Specimen part, Subject, Time
View SamplesPsoriasis is a chronic, debilitating, immune-mediated inflammatory skin disease. As IFN- is involved in many cellular processes, including activation of T cells and dendritic cells (DCs), antigen processing and presentation, cell adhesion and trafficking, and cytokine and chemokine production, IFN--producing Th1 cells were proposed to be integral to the pathogenesis of psoriasis. Recently, IFN- was shown to enhance IL-23 and IL-1 production by DCs and subsequently induce Th17 cells, important contributors to the inflammatory cascade in psoriasis lesions. To determine if IFN- indeed induces the pathways leading to the development of psoriasis lesions, a single intradermal injection of IFN- was administered to an area of clinically normal, non-lesional skin of psoriasis patients and biopsies were collected 24 hours later. Although there were no visible changes in the skin, IFN- induced molecular and histological features characteristic of psoriasis lesions. IFN- increased a number of differentially expressed genes in the skin, including many chemokines concomitant with an influx of T cells and inflammatory DCs. Furthermore, inflammatory DC products TNF, iNOS, IL-23, and TRAIL were present in IFN--treated skin. Thus, IFN-, which is significantly elevated in non-lesional skin compared to healthy skin, appears to be a key pathogenic cytokine that can induce the inflammatory cascade in psoriasis.
A single intradermal injection of IFN-γ induces an inflammatory state in both non-lesional psoriatic and healthy skin.
Disease, Disease stage
View SamplesIn psoriasis, inflammation and epidermal hyperplasia are thought to be controlled by T cell-derived cytokines. Evidence now suggests that Th17 and Th22 cells infiltrate psoriasis lesions and by secreting IL-17 and IL-22, respectively, may drive disease-specific gene or cell responses. While studies in model systems indicate that IL-22 has a dominant pathogenic role, there is evolving evidence that IL-17 contributes to features of psoriasis. To more fully understand the role of IL-17 in human disease pathogenesis, we examined psoriatic skin lesions obtained from patients treated with an anti-IL-17 (IL-17 A) monoclonal antibody, LY2439821. In a phase 1, randomized, double-blind, placebo-controlled dose escalation trial, patients with chronic psoriasis were randomized to receive 3 doses of subcutaneous LY2439821 at 5 mg (n=8), 15 mg (n=8), 50 mg (n=8), 150 mg (n=8) or placebo (n=8) at weeks 0, 2 and 4. Repeat biopsies were taken from the same lesional area at baseline, week 2 and 6. At week 6, a PASI75 was observed in 0/8, 2/8, 5/7 and 8/8 patients receiving 5 mg, 15 mg, 50 mg or 150 mg LY2439821 respectively and 0/8 patients receiving placebo. The antibody was well-tolerated. In patients receiving the two highest doses, histological and immunohistochemical analyses of biopsies revealed significant reductions from baseline in keratinocyte proliferation, hyperplasia and epidermal thickness after 2 weeks, as well as reduced infiltration into the dermis and epidermis by T-cells (CD3+) and dendritic cells (CD11c and DC-LAMP). Keratinocyte expression of innate defense proteins, S100A7, S100A8, beta-defensin2 and LL37/cathelicidin was also reduced. By week 6, the skin appeared normal with a reversal of disease defining pathological features. Quantitative RT-PCR revealed decreased expression of interferon gamma (IFN-gamma), IL-22 and IL-17, key cytokines from T cell subsets Th1, Th22 and Th17, respectively. In order to explore the extent to which IL-17 blockade influences an even broader set of inflammatory or psoriatic disease related genes, mRNA levels from skin biopsy samples were evaluated using whole genome microarrays. At week 2, the highest dose of LY2439821 modulated over 1500 genes significantly (>1.5 fold change [FC], p<0.05). Of these, 51 genes were strongly suppressed (>7-fold) including IL-19, lipocalin, amphiregulin, granzyme B, and several chemokines. In a separate analysis, those genes known to be synergistically regulated by both IL-17 and TNF-alpha showed the greatest normalization in expression compared to genes known to be regulated by TNF-alpha alone, IFN-gamma or Interferon alpha. Our data suggest that Th17 cells, through the expression of IL-17, mediate psoriasis pathogenesis, and that neutralization of IL-17 with LY2439821 suppresses signaling through multiple inflammatory circuits by inhibiting expression of cytokines from multiple T cell subsets, as well as chemokines, and antimicrobial proteins from keratinocytes.
IL-17A is essential for cell activation and inflammatory gene circuits in subjects with psoriasis.
Subject, Time
View SamplesActivation of Sirtuin (silent mating type information regulation 2 homolog) 1, or SIRT1, is an unexplored therapeutic approach for treatment of inflammatory diseases. The goal of this study was to evaluate the clinical activity and tolerability of multiple doses of SRT2104, a selective activator of SIRT1, in patients with moderate to severe psoriasis after day 84 of treatment. Forty patients were randomized 4:1 to three escalating doses of SRT2104 (250, 500, 1000 mg/d SRT2104 or placebo). Across all SRT2104 groups, 34.6% of patients (9 out of 26; 90% CI 18.0%-54.2%, p<0.0001) achieved good to excellent histological improvement based on skin biopsies taken at baseline and day 84. To evaluate the changes in expression profile with treatment and to identify pathways involved in histological improvement, a subset of 22 Pre and Post treatment biopsies from 11 patients (4 Placebo, 7 Active Treatment) were hybridized to hgu133plus2 chips. Improvement in histology was associated with modulation of IL-17 and TNF-_ signaling pathways and keratinocyte differentiation target genes. Various studies suggest a crucial role of TNF_ and IL-17 in psoriasis pathogenesis and IL-17/TNF_ synergism induces a strong induction of differentially expressed genes in psoriasis, thus advocating a crucial role of IL-17/TNF_ combination in the molecular basis of disease (Chiricozzi et al., 2010). In the current study, broad scale gene expression profiling revealed that SRT2104 significantly reduced known IL-17 and TNF_ responsive genes including SERPINB4, S100A12, SERPINB3, kynu etc. even though the sample size for this analysis was small. One of the most highly modulated genes by SRT2104 included Kynu, a gene that regulates tryptophan metabolism, known to confer antibacterial effector functions (Daubener and MacKenzie, 1999). Interestingly kynu is part of the etanercept residual genomic profile that is not modulated by etanercept therapy even though clinical efficacy is achieved. Possibly, SRT2104 may be modulating the lipid barrier of the epidermis of psoriatic skin via modulation of keratinocyte diferentiation genes, which would be consistent with the observed improvement in skin histology. These results indicate a combinatorial effect of SRT2104 on TNF_, and IL-17 inflammatory signaling pathways and keratinocyte differentiation that could be a contributing factor towards improvement in clinical scores by the SIRT1 activator, SRT2104.
A Randomized, Placebo-Controlled Study of SRT2104, a SIRT1 Activator, in Patients with Moderate to Severe Psoriasis.
Treatment, Subject, Time
View SamplesWe sought to define the cutaneous response at 24 hours following erythemogenic doses of narrow-band UVB (NB-UVB, 312 nm peak) exposure and determine the differences between irradiated and non-irradiated skin.
Gene profiling of narrowband UVB-induced skin injury defines cellular and molecular innate immune responses.
Subject
View SamplesEight healthy human subjects were enrolled in a 6-day simulated shift work protocol. Blood samples were collected during the two 24-hour measurement periods. Blood samples were collected every 4 hours during both measurement periods. Subjects entered the lab on Day 1. At the start of Day 2, the first 24-hour measurement period was started. Subjects slept according to their habitual sleep/wake schedule, followed by a 16-hour constant posture procedure. On days 3-6, the sleep period was delayed by 10 hours. Following the third night on this schedule, subjects underwent another 24-hour measurement period. During both measurement periods, 7 blood samples were collected and PBMCs were isolated. mRNA was extracted, labelled, and hybridized to microarrays.
Simulated night shift work induces circadian misalignment of the human peripheral blood mononuclear cell transcriptome.
Subject
View SamplesTo understand the development of new psoriasis lesions, we studied a group of moderate-to-severe psoriasis patients who experienced a relapse after ceasing efalizumab (anti-CD11a, Raptiva, Genentech). There were increased CD3+ T cells, neutrophils, CD11c+ and CD83+ myeloid DCs, but no increase in CD1c+ resident myeloid DCs. In relapsed lesions, there were many CD11c+CD1c-, inflammatory myeloid DCs identified by TNFSF10/TRAIL, TNF, and iNOS. CD11c+ cells in relapsed lesions co-expressed CD14 and CD16 in situ. Efalizumab induced an improvement in many psoriasis genes, and during relapse, the majority of these genes reversed back to a lesional state. Gene Set Enrichment Analysis (GSEA) of the transcriptome of relapsed tissue showed that many of the gene sets known to be present in psoriasis were also highly enriched in relapse. Hence, on ceasing efalizumab, T cells and myeloid cells rapidly enter the skin to cause classic psoriasis.
Post-therapeutic relapse of psoriasis after CD11a blockade is associated with T cells and inflammatory myeloid DCs.
Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesCellular and molecular differences between DNs and CMNs are not completely understood. Using cDNA microarray, quantitative RT-PCR, and immunohistochemistry, we molecularly characterized DNs and analyzed the difference between DNs and CMNs.
Discrimination of Dysplastic Nevi from Common Melanocytic Nevi by Cellular and Molecular Criteria.
Specimen part
View SamplesThis was a phase II, randomized, placebo-controlled, double-blinded single center study (clinicaltrials.gov: NCT01806662) to investigate safety and efficacy of ustekinumab treatment in moderate-to-severe AD patients. Patients underwent 1:1 randomization using a computer generated subject randomization table by an unblinded pharmacist. to Subjects received subcutaneous ustekinumab or placebo at weeks 0, 4, and 16 with a crossover to the other agent (either ustekinumab or placebo) at weeks 16, 20, and 32 (Figure 1A) to ensure patient retention.
Efficacy and safety of ustekinumab treatment in adults with moderate-to-severe atopic dermatitis.
Specimen part, Disease, Treatment, Subject, Time
View Samples