Here we show that platinum-resistant ovarian cancer cells also show reduced cholesterol biosynthesis, and mostly rely on uptake of exogenous cholesterol for their needs. Expression of FDPS and OSC, enzymes involved in cholesterol synthesis, are decreased both in drug-resistant cells and upon TRAP1 silencing, whereas the expression of LDL receptor, the main mediator of extracellular cholesterol uptake, is increased. Strikingly, treatment with different statins to inhibit cholesterol synthesis reduces cisplatin-induced apoptosis, whereas silencing of LIPG, an enzyme involved in lipid metabolism, increases sensitivity to the drug.
Cholesterol Homeostasis Modulates Platinum Sensitivity in Human Ovarian Cancer.
Specimen part, Cell line
View SamplesEpigenetic changes play a role in the pathogenesis of myeloid malignancies and hypomethylating agents have shown efficacy in these diseases. We studied the apoptotic effect, the genome-wide methylation and gene expression profiles in HL60 cells following decitabine treatment, using micro-array technologies. Decitabine treatment resulted in a decrease in global DNA methylation, corresponding to 4876 probeset IDs with significantly reduced methylation levels, while expression of 2583 IDs was induced. The integrated analysis identified 160 genes demethylated and upregulated by decitabine, mainly including development and differentiation pathways genes. Genes target of polycomb group protein regulation were overrepresented in this group. Apoptosis was induced by decitabine and apoptosis-specific PCR arrays more precisely indicated decitabine-induced upregulation of 13 apoptosis-related genes, in particular Dap-kinase 1 and Bcl2L10. Correspondingly, in primary patient samples, BCL2L10 was hypermethylated in 45% of AML, 43% of therapy-related myeloid neoplasms, 12% of MDS and in none of the controls.
Analysis of genome-wide methylation and gene expression induced by 5-aza-2'-deoxycytidine identifies BCL2L10 as a frequent methylation target in acute myeloid leukemia.
Specimen part
View SamplesIn order to investigate the effects of Glatiramer acetate (GA) in treatment-nave RR-MS female patients B cells we performed Affymetrix Gene-Chip Human Genome HG-U133A_2 hybridization experiments
Glatiramer Acetate modulates ion channels expression and calcium homeostasis in B cell of patients with relapsing-remitting multiple sclerosis.
Sex, Specimen part, Disease, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Mutation of senataxin alters disease-specific transcriptional networks in patients with ataxia with oculomotor apraxia type 2.
Disease
View SamplesSenataxin, encoded by the SETX gene, contributes to multiple aspects of gene expression, including transcription and RNA processing. Mutations in SETX cause the recessive disorder ataxia with oculomotor apraxia type 2 (AOA2) and a dominant juvenile form of amyotrophic lateral sclerosis (ALS4). To assess the functional role of senataxin in disease, we examined differential gene expression in AOA2 patient fibroblasts, identifying a core set of genes showing altered expression by microarray and RNA-sequencing. To determine whether AOA2 and ALS4 mutations differentially affect gene expression, we overexpressed disease-specific SETX mutations in senataxin-haploinsufficient fibroblasts and observed changes in distinct sets of genes. This implicates mutation-specific alterations of senataxin function in disease pathogenesis and provides a novel example of allelic neurogenetic disorders with differing gene expression profiles. Weighted gene co-expression network analysis (WGCNA) demonstrated these senataxin-associated genes to be involved in both mutation-specific and shared functional gene networks. To assess this in vivo, we performed gene expression analysis on peripheral blood from members of 12 different AOA2 families and identified an AOA2-specific transcriptional signature. WGCNA identified two gene modules highly enriched for this transcriptional signature in the peripheral blood of all AOA2 patients studied. These modules were disease-specific and preserved in patient fibroblasts and in the cerebellum of Setx knockout mice demonstrating conservation across species and cell types, including neurons. These results identify novel genes and cellular pathways related to senataxin function in normal and disease states, and implicate alterations in gene expression as underlying the phenotypic differences between AOA2 and ALS4.
Mutation of senataxin alters disease-specific transcriptional networks in patients with ataxia with oculomotor apraxia type 2.
No sample metadata fields
View SamplesThe origin and function of human double negative (DN) TCR-alpha/beta T cells is unknown. They are thought to contribute to the pathogenesis of systemic lupus erythematosus because they expand and accumulate in inflamed organs. Here we provide evidence that human TCR-alpha/beta CD4- CD8- DN T cells derive exclusively from activated CD8+ T cells. Freshly isolated TCR-alpha/beta DN T cells display a distinct gene expression and cytokine production profile. DN cells isolated from peripheral blood as well as DN cells derived in vitro from CD8+ T cells, produce a defined array of pro-inflammatory mediators that includes IL-1, IL-17, IFN-gama, CXCL3, and CXCL2. These results indicate that, upon activation, CD8+ T cells have the capacity to acquire a distinct phenotype that grants them inflammatory capacity.
Human TCR-alpha beta+ CD4- CD8- T cells can derive from CD8+ T cells and display an inflammatory effector phenotype.
Specimen part
View SamplesA transgenic mouse was generated using a CD2-driven transgene containing the cDNA of Ppp2ca to achieve over-expression of PP2Ac in T cells. Nave CD4 T cells were isolated and lysed at times 0, 6, and 24 hours after stimulation with anti-CD3 and anti-CD28
Protein phosphatase 2A enables expression of interleukin 17 (IL-17) through chromatin remodeling.
No sample metadata fields
View SamplesWe report that whole body PRMT7-/- adult mice display a significant reduction in in muscle mass. RNA sequencing was performed to identify potential PRMT7 targets. We found that top canonical pathways affected by the loss of PRMT7 includes cell cycle and senescence. Overall design: RNA was extracted from tibialis anterior muscles harvested from 3 WT and 3 PRMT7 null mice at 8months. RNA sequencing was performed to compare mRNA in skeletal muscles between WT and KO mice.
PRMT7 Preserves Satellite Cell Regenerative Capacity.
Age, Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Global transcriptome and chromatin occupancy analysis reveal the short isoform of GATA1 is deficient for erythroid specification and gene expression.
Specimen part, Cell line
View SamplesThe transcriptional activiy of GATA1s was compared to GATA1 through gene expression analysis in a cell line model with both erythroid and megakaryocyte differentiation.
Global transcriptome and chromatin occupancy analysis reveal the short isoform of GATA1 is deficient for erythroid specification and gene expression.
Specimen part, Cell line
View Samples