The ability to regenerate or recover from injuries varies greatly not only between species but also between tissues and organs or developmental stages of the same species. The mechanisms behind these different regenerative capabilities are ultimately dependent on the control of genome activity, determined by a complex interplay of regulatory elements functioning at the level of chromatin. Resetting of gene expression patterns during injury responses is, thus, shaped by the coordinated action of genomic regions (enhancers, silencers) that integrate the activity of multiple sequence-specific DNA binding proteins (transcription factors and cofactors). Using genome- wide approaches to interrogate chromatin function here we identify the regulatory elements governing tissue recovery in Drosophila wing imaginal discs, which show a high regenerative capacity after genetically induced cell death. Our findings point to a global co-regulation of gene expression and provide evidence for Damage Responding Regulatory Elements (DRRE), some of which are novel whereas others are also used in other tissues or developmental stages. Overall design: We collected data at different time points (0, 15 and 25h) after apoptosis induction. These time periods were selected because they included the most important transcriptional responses to apoptosis, ranging from the earliest gene expression up to complete re-patterning. Discs kept at the same conditions without inducing cell death were used as controls.
Damage-responsive elements in <i>Drosophila</i> regeneration.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
dKDM5/LID regulates H3K4me3 dynamics at the transcription-start site (TSS) of actively transcribed developmental genes.
Specimen part
View SamplesH3K4me3 is a histone modification related to gene activation. LID is a demethylase acting on this residue and therefore, it could be important for proper expression of genes in Drosophila developing tissues, such as wing imaginal discs
dKDM5/LID regulates H3K4me3 dynamics at the transcription-start site (TSS) of actively transcribed developmental genes.
No sample metadata fields
View SamplesIn pigs, adipose tissue is one of the principal organs involved in the regulation of lipid metabolism. It is particulary involved in the overall fatty acid synthesis with consequences in other lipid-target organs such as muscles and the liver. With this in mind, we have used massive, parallel high-throughput sequencing technologies to characterize the porcine adipose tissue transcriptome architecture in six Iberian x Landrace crossbred pigs showing extreme phenotypes for intramuscular fatty acid composition (three per group). High-throughput RNA sequencing was used to generate a whole characterization of adipose tissue (backfat) transcriptome. A total of 4,130 putative unannotated protein-coding sequences were identified in the 20% of reads which mapped in intergenic regions. Furthermore, 36% of the unmapped reads were represented by interspersed repeats, SINEs being the most abundant elements. Differential expression analyses identified 396 candidate genes among divergent animals for intramuscular fatty acid composition. Sixty-two percent of these genes (247/396) presented higher expression in the group of pigs with higher content of intramuscular SFA and MUFA, while the remaining 149 showed higher expression in the group with higher content of PUFA. Pathway analysis related these genes to biological functions and canonical pathways controlling lipid and fatty acid metabolisms. In concordance with the phenotypic classification of animals, the major metabolic pathway differentially modulated between groups was de novo lipogenesis, the group with more PUFA being the one that showed lower expression of lipogenic genes. These results will help in the identification of genetic variants at loci that affect fatty acid composition traits. The implications of these results range from the improvement of porcine meat quality traits to the application of the pig as an animal model of human metabolic diseases.
Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition.
Sex, Specimen part
View SamplesThe liver transcriptomes of two female groups (High and Low) with phenotypically extreme intramuscular fatty acid composition were sequenced using RNA-Seq [accn: SRA053452, subid: 86092, Bioproject: PRJNA168072]. A total of 146 and 180 unannotated protein-coding genes were identified in intergenic regions for the L and H groups, respectively. In addition, a range of 5.8 to 7.3% of repetitive elements was found, with SINEs being the most abundant elements. The expression in liver of 186 (L) and 270 (H) lncRNAs was also detected. The higher reproducibility of the RNA-Seq data was validated by RT-qPCR and porcine expression microarrays, therefore showing a strong correlation between RT-qPCR and RNA-Seq data (ranking from 0.79 to 0.96), as well as between microarrays and RNA-Seq (r=0.72). A differential expression analysis between H and L animals identified 55 genes differentially-expressed between groups. Pathways analysis revealed that these genes belong to biological functions, canonical pathways and three gene networks related to lipid and fatty acid metabolism. In concordance with the phenotypic classification, the pathways analysis inferred that linolenic and arachidonic acids metabolism was altered between extreme individuals. In addition, a connection was observed among the top three networks, hence suggesting that these genes are interconnected and play an important role in lipid and fatty acid metabolism.
Liver transcriptome profile in pigs with extreme phenotypes of intramuscular fatty acid composition.
Sex, Specimen part
View SamplesDrosophila mosaic eye-antennal discs from the listed genotypes generated using the MARCM system were dissected from 3rd instar larvae at day 5 after egg deposition.
The BTB-zinc finger transcription factor abrupt acts as an epithelial oncogene in Drosophila melanogaster through maintaining a progenitor-like cell state.
Specimen part
View SamplesNF-kB has been linked to doxorubicin-based chemotherapy resistance in breast cancer patients. NF-kB nuclear translocation and DNA binding in doxorubicin treated-breast cancer cells have been extensively examined, however its functional consequences in terms the spectrum of NF-kB -dependent genes expressed and, thus, the impact on tumour cell behaviour are unclear.
Deficiency in p53 is required for doxorubicin induced transcriptional activation of NF-кB target genes in human breast cancer.
Cell line, Treatment
View SamplesBackground: Interval breast cancers can occur through failure to detect an abnormality at the time of screening (missed interval cancer), or as a new event after a negative screen (true interval cancer). The development and progression of true interval tumors (TIBC) is known to be different than screen-detected tumors (SDBC). However, much work still needs to be done to understand the biological characteristics and clinical behaviour of these TIBC. Objectives: To characterize the gene expression profile in TIBC and SDBC aimed to identify biological markers that may be associated with the emergence of symptomatic breast cancer in the screening interval. Material and Methods: An unsupervised exploratory gene expression profile analysis was performed among 10 samples (discovery set, TIBC=5 and SDBC=5) using Affymetrix Human Gene 1.0 ST arrays and interpreted by Ingenuity Pathway Analysis. Differential expression of selected genes was confirmed in validation series of 91 patients (TIBC=12 and SDBC=79) by immunohistochemistry and 24 patients (TIBC=8 and SDBC=16) by RT-qPCR, expanding the analysis to other genes in same pathway (mTOR, 4E-BP1, eIF-4G and S6).
Gene expression profiling in true interval breast cancer reveals overactivation of the mTOR signaling pathway.
Specimen part
View SamplesCTLA-4 is thought to inhibit effector T cells both intrinsically, by competing with CD28 for B7 ligands, and extrinsically, through the action of regulatory T cells. We studied in vivo responses of normal and CTLA-4-deficient antigen-specific murine effector CD4+ T cells. In order to do these studies in a physiological model of immunity to foreign antigen, we transferred small numbers of congenically marked RAG2-deficient 5C.C7 T cells with either a normal or knockout allele of CTLA-4 into normal syngeneic B10.A recipient mice. The T cells were then activated by immunization with MCC peptide and LPS. To look for transcriptional signatures of negative regulation of T cell responses by CTLA-4, we used microarray analysis to compare transcripts in wild type and CTLA-4 KO 5C.C7 T cells four days after immunization. This is the first instance in which differences are observed in extent of accumulation of wild type and CTLA-4 KO 5C.C7 T cells.
Cutting edge: CTLA-4 on effector T cells inhibits in trans.
Specimen part
View SamplesA LHX4 transgenic reporter line with high specificity for developing mouse cone photoreceptors was identified and used to purify early stage cone photoreceptors for profiling by single cell RNA sequencing. Overall design: Collection of FACS-sorted LHX4::GFP+ E14.5 early cones and LHX4::GFP- retinal cells for further analysis.
Identification of Genes With Enriched Expression in Early Developing Mouse Cone Photoreceptors.
Specimen part, Cell line, Subject
View Samples