Transcription profiling of wild type, relA-, and relA-spoT-, crp-, dksA-, rpoS-, lrp- mutant strains of E. coli starved for isoleucine
The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Histone-fold domain protein NF-Y promotes chromatin accessibility for cell type-specific master transcription factors.
Specimen part
View SamplesCell type-specific master transcription factors (MTFs) play vital roles in defining cell identity and function. However, the roles ubiquitous factors play in the specification of cell identity remain underappreciated. Here we show that all three subunits of the ubiquitous heterotrimeric CCAAT-binding NF-Y complex are required for the maintenance of embryonic stem cell (ESC) identity, and establish NF-Y as a novel component of the core pluripotency network. Genome-wide occupancy and transcriptomic analyses in ESCs and neurons reveal that not only does NF-Y regulate genes with housekeeping functions through cell type-invariant promoter-proximal binding, but also genes required for cell identity by binding to cell type-specific enhancers with MTFs. Mechanistically, NF-Y's distinctive DNA-binding mode promotes MTF binding at enhancers by facilitating a permissive chromatin conformation. Our studies unearth a novel function for NF-Y in promoting chromatin accessibility, and suggest that other proteins with analogous structural and DNA-binding properties may function in similar ways.
Histone-fold domain protein NF-Y promotes chromatin accessibility for cell type-specific master transcription factors.
Specimen part
View SamplesCells were reprogrammed from cardiac fibroblasts to cardiomyocytes, in various conditions. These are the iCM cells (induced cardiomyocytes). There are both human and mouse arrays here, as seen below.
In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes.
Specimen part
View SamplesGene expression levels of pancreatic cell lines Overall design: RNA was extracted from cell lines and subjected to 50bp paired-end RNA sequencing
Integrated Patient-Derived Models Delineate Individualized Therapeutic Vulnerabilities of Pancreatic Cancer.
Specimen part, Subject
View SamplesAPCmin/+ mice develop spontaneous gastrointestinal polyposis due to a dominantly inhereited germline loss-of-function mutation in the tumor suppressor adenomatous polyposis coli (APC). Changes in intestinal immune activity have been documented to occur prior to the development of fulminate polyposis. Such changes are thought to contribute to disease development.
Oral interleukin-10 alleviates polyposis via neutralization of pathogenic T-regulatory cells.
Age, Specimen part
View SamplesHematopoietic cells arise from spatiotemporally restricted domains in the developing embryo. Although studies of non-mammalian animal and in vitro embryonic stem cell models suggest a close relationship among cardiac, endocardial, and hematopoietic lineages, it remains unknown whether the mammalian heart tube serves as a hemogenic organ akin to the dorsal aorta. Here, we examined the hemogenic activity of the developing endocardium. Mouse heart explants generated myeloid and erythroid colonies in the absence of circulation. Hemogenic activity arose from a subset of endocardial cells in the outflow cushion and atria earlier than in the aorta-gonad-mesonephros region, and was transient and definitive in nature. Interestingly, key cardiac transcription factors, Nkx2-5 and Isl1, were expressed in and required for the hemogenic activity of the endocardium. Together, these data suggest that a subset of endocardial and yolk sac endothelial cells expressing cardiac markers serve as a de novo source for transient definitive hematopoietic progenitors.
Haemogenic endocardium contributes to transient definitive haematopoiesis.
Specimen part
View SamplesHuman pluripotent stem cells (hPSCs) require precise control of post-transcriptional RNA networks to maintain proliferation and survival. Using a recently developed enhanced UV crosslinking and immunoprecipitation (eCLIP) approach, we identify RNA targets of the IMP/IGF2BP family of RNA-binding proteins in hPSCs. At the broad region- and binding site-level IMP1 and IMP2 show reproducible binding to a large and overlapping set of 3''UTR-enriched targets. RNA Bind-N-Seq applied to recombinant full-length IMP1 and IMP2 reveals CA-rich motifs that are enriched in eCLIP-defined binding sites. We observe that IMP1 loss in hPSCs recapitulates IMP1 phenotypes, including a reduction in cell adhesion and an increase in cell death. For cell adhesion, in hPSCs we find IMP1 maintains levels of integrin mRNA, specifically regulating RNA stability of ITGB5. Additionally, we show IMP1 can be linked to hPSC survival via direct target BCL2. Thus, transcriptome-wide binding profiles identify hPSC targets modulating well-characterized IMP1 roles. Overall design: eCLIP-seq was performed in biological replicate for IGF2BP1/IMP1 and IGF2BP2/IMP2, as well as one replicate each for IGF2BP3/IMP3, RBFOX2, and an IgG control. Each sample has a size-matched input control for analysis
Enhanced CLIP Uncovers IMP Protein-RNA Targets in Human Pluripotent Stem Cells Important for Cell Adhesion and Survival.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease.
Sex, Age, Specimen part, Subject
View SamplesEpigenetic alterations may provide important insights into gene-environment interaction in inflammatory bowel disease (IBD). Here we observe epigenome-wide DNA methylation differences in 240 newly-diagnosed IBD cases and 190 controls. These include 439 differentially methylated positions (DMPs) and 5 differentially methylated regions (DMRs), which we study in detail using whole genome bisulphite sequencing. We replicate the top DMP (RPS6KA2) and DMRs (VMP1, ITGB2, TXK) in an independent cohort.
Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease.
Sex, Age, Specimen part
View Samples