Actin dynamically shuttles between the nucleus and cytosplasm and regulates a wide range of transcriptional processes within the nucleus
Nuclear actin modulates cell motility via transcriptional regulation of adhesive and cytoskeletal genes.
Specimen part, Cell line
View SamplesFamilial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML) is an autosomal dominant disease of the hematopoietic system, which is caused by heterozygous mutations in RUNX1. FPD/AML patients have a bleeding disorder characterized by thrombocytopenia with reduced platelet numbers and functions, and a tendency to develop AML. Currently no suitable animal models exist for FPD/AML as Runx1+/- mice and zebrafish do not develop bleeding disorders or leukemia. Here we derived induced pluripotent stem cells (iPSCs) from two patients in a family with FPD/AML, and found that the FPD iPSCs display defects in megakaryocytic differentiation in vitro. We corrected the RUNX1 mutation in one FPD iPSC line through gene targeting, which led to normalization of megakaryopoiesis of the iPSCs in culture. Our results demonstrate successful in vitro modeling of FPD with patient-specific iPSCs and confirm that RUNX1 mutations are responsible for megakaryopoietic defects in FPD patients.
Targeted correction of RUNX1 mutation in FPD patient-specific induced pluripotent stem cells rescues megakaryopoietic defects.
No sample metadata fields
View SamplesImportantly increasing evidence shows that Hox genes such as Hoxa9 are key regulators of stem cell self-renewal and hematopoiesis. Hoxa9 is expressed in early hematopoietic progenitor cells and promotes stem cell expansion. In contrast Hoxa9 down regulation is associated with hematopoietic differentiation. In addition to its role in development, HOXA9 has been intensively studied because of its central role in human acute leukemias. Despite their obvious biomedical importance, the mechanisms through which Hoxa9 and its partner proteins exert their downstream functions are poorly understood.
The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis.
Sex, Specimen part, Cell line, Time
View SamplesRNAseq analysis of caecal tissue from 14 C. jejuni-susceptible and 14 C. jejuni-resistant birds from a single population of infected chickens was conducted in order to identify gene expression associated with resistance to colonization. Significantly higher expression of genes involved in the innate immune response, cytokine signaling, B cell and T cell activation and immunoglobulin production, as well as the renin-angiotensin system was observed in resistant birds. Overall design: A population of 255 Barred Rock chickens were orally inoculated with C. jejuni and their caecal colonization levels estimated 48 hours post-inoculation. Caecal samples from 14 birds with no colonization and the 14 birds with the highest colonization were selected for mRNA sequencing.
Genome-wide association analysis of avian resistance to Campylobacter jejuni colonization identifies risk locus spanning the CDH13 gene.
Specimen part, Subject
View SamplesAnalysis of DZNep-induced gene expression changes in cultured podocytes. The hypothesis tested in the present study was that DZnep ultimately augments Txnip expression, increasing oxidative stress in podocytes. These results provide important information on the response of podocytes to histone methyltransferase inhibition and a possible mechanism for DZNep action in podocytes.
The Histone Methyltransferase Enzyme Enhancer of Zeste Homolog 2 Protects against Podocyte Oxidative Stress and Renal Injury in Diabetes.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Sarcoma Cell Line Screen of Oncology Drugs and Investigational Agents Identifies Patterns Associated with Gene and microRNA Expression.
Specimen part, Cell line
View SamplesCharacterization of 68 cell lines derived from human sarcoma and 5 normal counterpart cells, including drug sensitivity testing, gene expression profiling and microRNA expression profiling have been completed. Data and tools for searching these data will be made publicly available through the NCI Developmental Therapeutics Program. The raw data (.cel files ) are provided through the GEO website. Sarcoma represents a variety of cancers at arise from cells of mesenchymal origin and have seen limited treatment advances in the last decade. Drug sensitivity data coupled with the transcription and microRNA profiles of a cohort of sarcoma cell lines may help define novel treatment paradigms.
Sarcoma Cell Line Screen of Oncology Drugs and Investigational Agents Identifies Patterns Associated with Gene and microRNA Expression.
No sample metadata fields
View SamplesDespite the significant reduction in the overall burden of cardiovascular disease (CVD) over the past decade, CVD still accounts for a third of all deaths in the United States and worldwide each year. While efforts to identify and reduce risk factors for atherosclerotic heart disease (i.e. hypertension, dyslipidemia, diabetes mellitus, cigarette smoking, inactivity) remain the focus of primary prevention, the inability to accurately and temporally predict acute myocardial infarction (AMI) impairs our ability to further improve patient outcomes. Our diagnostic evaluation for the presence of coronary artery disease relies on functional testing, which detects flow-limiting coronary stenosis, but we have known for decades that most lesions underlying AMI are only of mild to moderate luminal narrowings, not obstructing coronary blood flow. Accordingly, there is a dire need of improved diagnostics for underlying arterial plaque dynamics, fissure and rupture. Here we describe the designation of a specific gene expression pattern acting as a molecular signature for acute myocardial infarction present in whole blood of patients that was determined using microarray analysis of enriched circulating endothelial cells (CEC).
A Whole Blood Molecular Signature for Acute Myocardial Infarction.
Specimen part, Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Small Cell Lung Cancer Screen of Oncology Drugs, Investigational Agents, and Gene and microRNA Expression.
Specimen part, Cell line
View SamplesCharacterization of 63 small cell lung cancer (SCLC) cell lines and a comparator set of non-small cell lung cancer and normal counterpart cells, including drug sensitivity testing, gene expression profiling and microRNA expression profiling have been completed. Data and tools for searching these data will be made publicly available through the NCI Developmental Therapeutics Program at http://SCLC.cancer.gov. SCLC is an aggressive, recalcitrant cancer and have seen limited treatment advances in the last 30 years. Drug sensitivity data coupled with the transcription and microRNA profiles of a cohort of SCLC cell lines may help define novel treatment paradigms.
Small Cell Lung Cancer Screen of Oncology Drugs, Investigational Agents, and Gene and microRNA Expression.
Specimen part
View Samples