Chronic early life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming, we treated zebrafish embryos with cortisol and examined the effects on adults. In adulthood, the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. Overall design: 30 samples total were analyzed. 9 caudal fins samples (0, 2 and 4dpa), 3 blood samples and 3 muscle samples from adults exposed to DMSO control as embryos. 9 caudal fins samples (0, 2 and 4dpa), 3 blood samples and 3 muscle samples from adults exposed to cortisol (1 micromolar) as embryos.
Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation.
No sample metadata fields
View SamplesIn order to characterize gene expression networks linked to AT1 angiotensin receptors in the kidney, we carried out genome-wide transcriptional analysis of RNA from kidneys of wild-type (WT) and AT1A receptor-deficient mice (KOs) at baseline and after 2 days of angiotensin II infusion (1 ug/kg/min), using Affymetrix GeneChip Mouse Genome 430 2.0 Arrays. At baseline, 405 genes were differentially expressed (>1.5X) between WT and KO kidneys. Of these, more than 80% were up-regulated in the KO group including genes involved in inflammation, oxidative stress, and cell proliferation. After 2 days of angiotensin II infusion in WT mice, expression of ~805 genes was altered (18% up-regulated, 82% repressed). Genes in metabolism and ion transport pathways were up-regulated while there was attenuated expression of protective genes against oxidative stress including glutathione synthetase and mitochondrial SOD2. Angiotensin II infusion has little effect on blood pressure in KOs. Nonetheless, expression of more than 250 genes was altered in kidneys from KO mice during angiotensin II infusion; 14% were up-regulated, while 86% were repressed including genes involved in immune responses, angiogenesis, and glutathione metabolism. Between WT and KO kidneys during angiotensin II infusion, 728 genes were differentially expressed; 10% were increased and 90% were decreased in the WT group. Differentially regulated pathways included those involved in ion transport, immune responses, metabolism, apoptosis, cell proliferation, and oxidative stress. This genome-wide assessment should facilitate identification of critical distal pathways linked to blood pressure regulation.
Gene expression profiles linked to AT1 angiotensin receptors in the kidney.
Sex, Specimen part, Treatment
View SamplesChronic early life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with 1 micromolar cortisol and examined the effects on larvae. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and up-regulated genes associated with defense response and immune system processes. Overall design: 6 samples total were analyzed. 3 DMSO controls, and 3 cortisol treated (1 micromolar).
Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation.
No sample metadata fields
View SamplesWTX encodes a tumor suppressor, frequently inactivated in Wilms tumor, with both plasma membrane and nuclear localization. WTX has been implicated in beta-catenin turnover, but its effect on nuclear proteins is unknown. We report an interaction between WTX and p53, derived from the unexpected observation of WTX, p53 and E1B 55K colocalization within the characteristic cytoplasmic body of adenovirus-transformed kidney cells. In other cells without adenovirus expression, the C-terminal domain of WTX binds to the DNA binding domain of p53, enhances its binding to CBP, and increases CBP/p300-mediated acetylation of p53 at Lys 382. WTX knockdown accelerates CBP/p300 protein turnover and attenuates this modification of p53. In p53-reconstitution experiments, cell cycle arrest, apoptosis, and p53-target gene expression are suppressed by depletion of WTX. Together, these results suggest that WTX modulates p53 function, in part through regulation of its activator CBP/p300.
The WTX tumor suppressor enhances p53 acetylation by CBP/p300.
Cell line
View SamplesCarcinoma-associated mesenchymal stem cells (CA-MSCs) are critical stromal progenitor cells within the tumor microenvironment. We previously demonstrated that CA-MSCs differentially express BMP genes, promote tumor cell growth, increase cancer 'stemness' and chemotherapy resistance. Here we use RNA sequencing of normal omental MSCs and ovarian CA-MSCs to demonstrate CA-MSCs have global changes in gene expression. Using these expression profiles we create a unique predictive algorithm to classify CA-MSCs. Our classifier, accurately distinguishes normal omental, ovary and bone marrow MSCs from ovarian cancer CA-MSCs. Suggesting broad applicability, the model correctly classifies pancreatic and endometrial cancer CA-MSCs and distinguishes cancer associated fibroblasts (CAFs) from CA-MSCs. Using this classifier, we definitively demonstrate ovarian CA-MSCs arise from tumor mediated reprograming of local tissue MSCs. While cancer cells alone cannot induce a CA-MSC phenotype, the in vivo ovarian tumor micoenvironment (TME) can reprogram omental or ovary MSCs to protumorigenic CA-MSC (classifier score of >0.96). In vitro studies suggest that both tumor secreted factors and hypoxia are critical to induce the CA-MSC phenotype. Interestingly, while the breast cancer TME can reprogram BM MSCs into CA-MSCs, the ovarian TME cannot, demonstrating for the first time that tumor mediated CA-MSC conversion is tissue and cancer type dependent. Together these findings (1) provide a critical tool to define CA-MSCs and (2) highlight cancer cell influence on distinct normal tissues providing powerful insights into the mechanisms underlying cancer specific metastatic niche formation. Carcinoma-associated mesenchymal stem cells (CA-MSCs) are critical stromal progenitor cells within the tumor microenvironment. We previously demonstrated that CA-MSCs differentially express BMP genes, promote tumor cell growth, increase cancer 'stemness' and chemotherapy resistance. Here we use RNA sequencing of normal omental MSCs and ovarian CA-MSCs to demonstrate CA-MSCs have global changes in gene expression. Using these expression profiles we create a unique predictive algorithm to classify CA-MSCs. Our classifier, accurately distinguishes normal omental, ovary and bone marrow MSCs from ovarian cancer CA-MSCs. Suggesting broad applicability, the model correctly classifies pancreatic and endometrial cancer CA-MSCs and distinguishes cancer associated fibroblasts (CAFs) from CA-MSCs. Using this classifier, we definitively demonstrate ovarian CA-MSCs arise from tumor mediated reprograming of local tissue MSCs. While cancer cells alone cannot induce a CA-MSC phenotype, the in vivo ovarian tumor micoenvironment (TME) can reprogram omental or ovary MSCs to protumorigenic CA-MSC (classifier score of >0.96). In vitro studies suggest that both tumor secreted factors and hypoxia are critical to induce the CA-MSC phenotype. Interestingly, while the breast cancer TME can reprogram BM MSCs into CA-MSCs, the ovarian TME cannot, demonstrating for the first time that tumor mediated CA-MSC conversion is tissue and cancer type dependent. Together these findings (1) provide a critical tool to define CA-MSCs and (2) highlight cancer cell influence on distinct normal tissues providing powerful insights into the mechanisms underlying cancer specific metastatic niche formation. Overall design: mRNA profiles of 4 normal omental MSCs and 10 ovarian CA-MSCs using Illumina TruSeq RNA Sample Preparation kit and Illumina HiSeq 100bp PE sequencing.
Ovarian Carcinoma-Associated Mesenchymal Stem Cells Arise from Tissue-Specific Normal Stroma.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
High-grade serous ovarian cancer arises from fallopian tube in a mouse model.
Specimen part, Disease, Disease stage
View SamplesWe analyzed gene expression in human fibroblasts stimulated by platelet-derived growth factor-BB (PDGF-BB) or basic fibroblast growth factor (bFGF) for 1h and 24h. The results of two independent experiments were merged. SAM analysis identified 116 relevant probe sets. Hierarchical clustering of these probe sets showed divergent early gene regulation by PDGF and FGF but overlapping late response. We first analyzed genes commonly regulated by PDGF-BB and b-FGF more than 2 fold after 24h of stimulation and we found that these two growth factors repressed FOXO.
The transcription of FOXO genes is stimulated by FOXO3 and repressed by growth factors.
No sample metadata fields
View SamplesThe cell of origin of serious ovarian cancer is unknown. To create a mouse model for this lethal cancer and identify early cancer biomarkers, we conditionally deleted both Dicer (essential for microRNA biosynthesis) and Pten (a negative regulator of the PI3K pathway) in the female reproductive tract. Beginning at ~3-5 months, these Dicer/Pten mutant mice develop high-grade serious carcinomas that initiate in the stroma of the fallopian tube through a mesenchymal-to-epithelial transition (MET), subsequently envelop the ovary, and then metastasize throughout the peritoneum, resulting in ascites and 100% lethality by 13 months. The fallopian tube cancers demonstrate upregulation of genes encoding known and novel secreted proteins that are potential biomarkers. This study uncovers a new paradigm for the initiation of high-grade serous ovarian cancer.
High-grade serous ovarian cancer arises from fallopian tube in a mouse model.
Specimen part, Disease, Disease stage
View SamplesThe cell of origin of serious ovarian cancer is unknown. To create a mouse model for this lethal cancer and identify early cancer biomarkers, we conditionally deleted both Dicer (essential for microRNA biosynthesis) and Pten (a negative regulator of the PI3K pathway) in the female reproductive tract. Beginning at ~3-5 months, these Dicer/Pten mutant mice develop high-grade serious carcinomas that initiate in the stroma of the fallopian tube through a mesenchymal-to-epithelial transition (MET), subsequently envelop the ovary, and then metastasize throughout the peritoneum, resulting in ascites and 100% lethality by 13 months. The fallopian tube cancers demonstrate upregulation of genes encoding known and novel secreted proteins that are potential biomarkers. This study uncovers a new paradigm for the initiation of high-grade serous ovarian cancer.
High-grade serous ovarian cancer arises from fallopian tube in a mouse model.
Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Systems genetics identifies a co-regulated module of liver microRNAs associated with plasma LDL cholesterol in murine diet-induced dyslipidemia.
No sample metadata fields
View Samples