refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 82 results
Sort by

Filters

Technology

Platform

accession-icon GSE47452
Mouse brain microarray, Chronic HDAC inhibitor treatment
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Here, we examined mouse brain trancriptional changes 1 hour after the 10th daily i.p. treament with one of the four following treaments: i) vehicle control (45% saline, 45% PEG-400 and 10% DMSO administered at 7.5mL/kg), ii) Cpd-60, 45mg/kg , administered at 7.5mL/kg or iii) SAHA, 25mg/kg, administered at 5mL/kg) or iv) CI-994, 10mg/kg, administered at 5mL/kg. Cpd-60 is a benzamide HDAC inhibitor with selectivity for class I HDAC subtypes HDAC1 and HDAC2; CI-994 is a benzamide inhibitor with selectivity for HDACs1,2 and 3; SAHA is a hydroxamic acid HDAC inhibitor with selectivity for class I HDAC subtypes 1,2, and 3 and the class II HDAC subtype HDAC 6. We examined transcript differences using the Illumnia WG-6 2.0 whole genome expression array and profiled 3 specific brain regions (prefrontal cortex, nucleus accumbens, hippocampus) from each of 36 mice (n=6 mice / treatment group) . For application to array chips, we pooled two biological replicates from like treatment and brain region-groups such that 36 samples were applied in total: 4 treatment groups x 3 brain regions per treament group x 3 pools of two samples each for each treatment/brain region.

Publication Title

A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon GSE9098
Estrogen-modulated gene expression in c-kit+ stem cells and CD44+ stromal cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The recent interest in the role of bone marrow derived endothelial progenitor cells in the benefits of estrogen on cardiovascular health brought us to evaluate if estrogen could affect cardiac repair more broadly by regulating biological processes involved in the functional organization of the bone marrow stem cell niche.

Publication Title

Estrogen-induced gene expression in bone marrow c-kit+ stem cells and stromal cells: identification of specific biological processes involved in the functional organization of the stem cell niche.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE43112
Expression data comparing human DKK1 and control vector transfected murine osteochondrosarcoma cells (MOS-J)
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Canonical Wnt signaling controls proliferation and differentiation of osteogenic progenitor cells, and tumor-derived secretion of the Wnt antagonist Dickkopf-1 (Dkk1) is correlated with osteolyses and metastasis in many bone malignancies. However, the role of Dkk1 in the oncogenesis of primary osteosarcoma (OS) remains unexplored. Here, we over-expressed Dkk1 in the OS cell line MOS-J. Contrary to expectations, Dkk1 had autocrine effects on MOSJ cells in that it increased proliferation and resistance to metabolic stress in vitro. In vivo, Dkk1 expressing MOS-J cells formed larger and more destructive tumors than controls. These effects were attributed in part to up-regulation of the stress response enzyme and cancer stem cell marker aldehyde-dehydrogenase-1 (ALDH1) through Jun-N-terminal kinase signaling. This is the first report linking Dkk1 to tumor stress resistance, further supporting the targeting of Dkk1 not only to prevent and treat osteolytic bone lesions but also to reduce numbers of stress-resistant tumor cells.

Publication Title

An unexpected role for a Wnt-inhibitor: Dickkopf-1 triggers a novel cancer survival mechanism through modulation of aldehyde-dehydrogenase-1 activity.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE13735
Expression data from rice genotypes FL478 and IR29
  • organism-icon Oryza sativa
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Salt Stress response of salt-tolerant genotype FL478 compared to IR29

Publication Title

Comparing genomic expression patterns across plant species reveals highly diverged transcriptional dynamics in response to salt stress.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE6325
Array-based genotyping and expression analysis of barley cv. Maythorpe and Golden Promise
  • organism-icon Hordeum vulgare
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Barley Genome Array (barley1)

Description

Salt Stress response of salt-tolerant genotype Golden Promise compared to Maythorpe

Publication Title

Array-based genotyping and expression analysis of barley cv. Maythorpe and Golden Promise.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE24843
Tet1 and hydroxymethylcytosine in transcription and DNA methylation fidelity
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer, Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE28332
The Demethylase JMJD2C/KDM4C Localizes to H3K4me3 Positive Transcription Start Sites
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The demethylase JMJD2C localizes to H3K4me3-positive transcription start sites and is dispensable for embryonic development.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE24842
Tet1 and hydroxymethylcytosine in transcription and DNA methylation fidelity (Affymetrix gene expression data)
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer, Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Enzymes catalyzing the methylation of the 5-position of cytosine (mC) have essential roles in regulating gene expression, genome stability, and maintaining cellular identity. Recently Tet1, which is highly expressed in embryonic stem (ES) cells, was found to oxidize the methyl group of mC converting it to 5-hydroxymethyl cytosine (hmC)3. Here, we present the genome-wide mapping of Tet1 and hmC in mouse ES cells. We show that Tet1 binds throughout the genome with the majority of binding sites located at transcription start sites (TSSs) and within genes. Similar to Tet1 and mC, also hmC is found throughout the genome and in particular in gene bodies. However, in contrast to mC, hmC is enriched at TSSs. Tet1 and hmC are associated with genes critical for the control of development and differentiation, which become methylated during differentiation. Surprisingly our results also suggest that Tet1 has a role in transcriptional repression. We show that Tet1 binds to a significant proportion of target genes that are positive for the Polycomb repressive histone mark H3K27me3, and that downregulation of Tet1 also leads to increased expression of a group of Tet1 target genes. In agreement with a potential repressive function, we show that Tet1 associates with the Sin3A co-repressor complex, which also co-localises with Tet1 throughout the genome. We propose that Tet1 fulfils dual functions in transcriptional regulation, where it fine-tunes DNA methylation and associates with the Sin3A co-repressor complex to prevent transcriptional activation.

Publication Title

TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE53892
The Demethylase JMJD2C/KDM4C Localizes to H3K4me3 Positive Transcription Start Sites (Affymetrix microarray analysis)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

We have mapped transcriptional changes after depletion of the histone demethylases JMJD2C/GASC1/KDM4C and JMJD2A/KDM4A alone or in combination in the esophageal squamous carcinoma cell line, KYSE150. The KYSE150 cell line contains an amplification of the JMJD2C locus.

Publication Title

The demethylase JMJD2C localizes to H3K4me3-positive transcription start sites and is dispensable for embryonic development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4412
freij-affy-human-91666
  • organism-icon Homo sapiens
  • sample-icon 169 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Diffuse infiltrating gliomas are the most common primary brain malignancy found in adults, and Glioblastoma multiforme, the highest grade glioma, is associated with a median survival of 7 months. Transcriptional profiling has been applied to 85 gliomas from 74 patients to elucidate glioma biology, prognosticate survival, and define tumor sub-classes. These studies reveal that transcriptional profiling of gliomas is more accurate at predicting survival than traditional pathologic grading, and that gliomas characteristically express coordinately regulated genes of one of four molecular signatures: neurogenesis, synaptic transmission, mitotic, or extra-cellular matrix. Elucidation of these survival associated molecular signatures will aid in tumor prognostication and define targets for future directed therapy.

Publication Title

Gene expression profiling of gliomas strongly predicts survival.

Sample Metadata Fields

Sex, Age, Specimen part, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact