The hormone prolactin is implicated in the pathogenesis of breast cancer, and a subset of prolactin-induced gene expression is mediated by CypA activity.
Inhibition of the Activity of Cyclophilin A Impedes Prolactin Receptor-Mediated Signaling, Mammary Tumorigenesis, and Metastases.
Sex, Specimen part, Disease, Disease stage, Cell line
View SamplesThe hormone prolactin is implicated in the pathogenesis of breast cancer, and a subset of prolactin-induced gene expression is mediated by HDAC6 activity.
HDAC6 Deacetylates HMGN2 to Regulate Stat5a Activity and Breast Cancer Growth.
Sex, Specimen part, Cell line
View SamplesThere are concerns regarding possible reproductive toxicity from consumption of soy including an increased risk of endometriosis and endometrial cancer. We used global uterine gene expression profiles in adult ovariectomized (OVX) female rats assessed by RNAseq to examine the estrogenicity of soy protein isolate (SPI) and the potential for feeding SPI to alter estrogen signaling in the uterus. Rats were fed AIN93G diets made with casein (CAS) or SPI from postnatal day (PND) 30. Rats were OVX on PND 50 and infused with 17 beta-estradiol (E2) or vehicle. E2 increased uterine wet weight (P<0.05) and significantly altered expression of 2084 uterine genes. In contrast, SPI feeding had no effect on uterine weight and only altered expression of 177 genes. Overlap between E2 and SPI genes was limited to 69 genes (3%). GO analysis indicated significant differences in uterine biological processes affected by E2 and SPI and little evidence for recruitment of ER alpha to the promoters of ER-responsive genes after SPI feeding. The major E2 up-regulated uterine pathways were cancer pathways and extracellular organization. SPI feeding up-regulated uterine PPAR signaling and fatty acid metabolism. The combination of E2 and SPI feeding resulted in significant regulation of 715 fewer genes relative to E2 alone. In a separate experiment, the combination of E2 and SPI reversed the ability of E2 to induce uterine proliferation in response to the carcinogen dimethybenz(a)anthracene (DMBA). These data suggest SPI does not act as a weak estrogen in the uterus but appears to be a selective estrogen receptor modulator (SERM) interacting with a small sub-set of E2-regulated genes and to be anti-estrogenic in the presence of endogenous estrogens. Overall design: Rat uterus mRNA of ovariectomized adult female rats subject to four different diets (Caseine, Caseine + E2, Soy and Soy+E2 ) were sequenced, in triplicate, in an Illumina GAIIx sequencer.
RNA-sequencing data analysis of uterus in ovariectomized rats fed with soy protein isolate, 17β-estradiol and casein.
No sample metadata fields
View SamplesThe majority of babies in the US are formula-fed instead of breast fed. There are major differences in the composition of formulas and breast milk and yet little is known about metabolic differences in babies as the result of feeding these very different diets and how that might affect development or disease risk in later life. One concern is that soy-based formulas might have adverse health effects in babies as a result of the presence of low levels of estrogenic phytochemicals genistein and daidzein which are normally present in soy beans. In the current study, we used a piglet model to look at this question. Piglets were either fed breast milk from the sow or were fed two different infant formulas (cows milk-based or soy-based) from age 2 days to 21 days when pigs are normally weaned onto solid food. Blood glucose and lipids were measured. Formula-fed pigs were found to have lower cholesterol than breast fed piglets and in addition had larger stores of iron in their liver.Microarray analysis was carried out to see if changes in liver gene expression could explain these effects of formula feeding. It was found that overall gene expression profiles were influenced by formula feeding compared to breast fed neonates. Gender-independent and unique effects of formula influenced cholesterol and iron metabolism. Further, soy formula feeding in comparison to milk-based formula failed to reveal any estrogenic actions on hepatic gene expression in either male or female pigs.
Formula feeding alters hepatic gene expression signature, iron and cholesterol homeostasis in the neonatal pig.
Sex
View SamplesThe current study was designed to determine if dietary fatty acid concentration and composition affects the development and progression of nonalcoholic fatty liver disease. Male SD rats were overfed diets low (5%) or high (70%) fat diets via total enteral nutrition where the fat source was olive oil (monounsaturated), or corn oil (polyunsaturated). Overfeeding 5% corn oil produced little steatosis relative to feeding 5% olive oil. This was associated with lower fatty acid synthesis and reduced SREBP-c signaling in the 5% corn oil group. Overfeeding 70% fat diets increased steatosis and lead to increased liver necrosis in the 70% corn oil but not olive oil group. Increased injury after feeding polyunsaturated fat diets was linked to peroxidizability of hepatic free fatty acids and triglycerides and appearance of peroxidaized lipid products HETES and HODES previously linked to clinical nonalcoholic steatohepatitis.
Dietary fat source alters hepatic gene expression profile and determines the type of liver pathology in rats overfed via total enteral nutrition.
Sex
View SamplesIn order to properly understand whether xenoestrogens act as estrogens, it is essential to possess a solid portrait of the physiological effects of exogenous estradiol. Because the estrogen-dependent gene expression is one of the primary biomarkers of estrogenic action, we have assessed effects of three doses of exogenous estradiol (0.1, 1.0 and 10 g/kg of body weight/day) on the mammary gland morphology and gene expression profiles by microarray analysis of prepubertal male and female rats of both sexes compared to untreated controls. Estradiol was administered subcutaneously with minipumps from weaning at PND21 to the end of the experiment at PND33. The data suggest that the male mammary is a sensitive tissue for estrogenicity assessment.
Mammary gland morphology and gene expression signature of weanling male and female rats following exposure to exogenous estradiol.
Sex
View SamplesOxidative stress in adipose tissue and liver has been linked to the development of obesity. NADPH oxidases (NOX) enzymes are a major source of reactive oxygen species (ROS). The current study was designed to determine if NOX2-generated ROS play a role in development of obesity and metabolic syndrome after high fat feeding. Wild type (WT) mice and mice lacking the cytosolic NOX2 activated protein p47phox (P47KO) were fed AIN-93G diets or high fat diets (HFD) containing 45% fat and 0.5% cholesterol for 13 weeks from weaning. Affymetrix array analysis revealed dramatically less expression of mRNA of genes linked to energy metabolism, adipocyte differentiation (PPAR, Runx2) and fatty acid uptake (CD36, lipoprotein lipase) in fat pads from female HFD-P47KO mice compared to HFD-WT females. These data suggest that NOX2 is an important regulator of metabolic homeostasis and that NOX2-associated ROS plays an important role in development of diet-induced obesity particularly in the female
Female mice lacking p47phox have altered adipose tissue gene expression and are protected against high fat-induced obesity.
Sex, Specimen part, Treatment
View SamplesMissense mutations in the gene for the ubiquitously expressed superoxide dismutase-1 (SOD1) are one of the causes of familial amyotrophic lateral sclerosis (ALS), the most common adult onset motor neuron disease in humans killing selectively large motor neurons. Mice and rats overexpressing mutant SOD1 develop an adult onset neurodegenerative disease with hindlimb-paralysis and subsequent death similar to the human condition. In order to analyze the effects of mutant SOD1 expression onto the most affected cell-type in ALS, a small subpopulation of spinal cord cells, we propose to use laser microdissection to isolate mouse lumbar motor neurons and to assess the changes onto the mRNA expression profile using Affymetrix GeneChips compared to control animals. While two studies applying a genomic approach on the ALS mouse models used the entire spinal cord, contributions of changes to motor neurons were masked by the inflammatory effects of mutant SOD1 and the much larger population of non-motor neuronal cells. What is therefore needed is a cell-type specific expression profile that could reveal dysregulations in the transcriptome of the affected motor neurons.
Toxicity from different SOD1 mutants dysregulates the complement system and the neuronal regenerative response in ALS motor neurons.
No sample metadata fields
View SamplesAdult neurogenesis in the murine dentate gyrus occurs in a specialized microenvironment that sustains the generation of neurons during life. To fully understand adult neurogenesis, it is essential to determine the neural stem cell (NSC) and progenitor developmental stages, their molecular determinants, and the niche cellular and molecular composition. We report on a single cell RNA sequencing study of the hippocampal niche, performed by isolating all the non-neuronal cell populations. Our analysis provides a comprehensive description of the dentate gyrus cells and allows the identification of exclusive cell type-specific markers. We define the developmental stages and transcriptional dynamics of NSCs and progenitors, and find that while NSCs represent a heterogeneous cellular continuum, progenitors can be grouped in distinct subtypes. We determine the oligodendrocyte lineage and transcriptional dynamics, and describe microglia transcriptional profile and activation state. The combined data constitutes a valuable resource to understand regulatory mechanisms of adult neurogenesis. Overall design: We generated transciptome data from cells unbiasely sorted from the hippocampal neurogenic niche after depleting the neuronal population
A Single-Cell RNA Sequencing Study Reveals Cellular and Molecular Dynamics of the Hippocampal Neurogenic Niche.
Specimen part, Cell line, Subject
View SamplesLgr5+ adult intestinal stem cells are highly proliferative throughout life. Single Lgr5+ stem cells can be cultured into 3D epithelial organoids containing all cell types at nearnormal ratios. Culture conditions to generate the main cell types have been established previously, but signals inducing the various types of enteroendocrine cells (EECs) have remained elusive. Here we generate quiescent Lgr5+ stem cells in vitro by inhibition of the EGF-receptor (EGFR) and mitogen-associated protein kinase (MAPK) signaling pathways in organoids, a state that can be readily reversed. Quiescent Lgr5+ stem cells gain a distinct molecular signature, biased towards EEC differentiation. Indeed, combined inhibition of Wnt, Notch and MAPK pathways efficiently generates a diversity of EEC subtypes in vitro. Our observations uncouple Wnt-dependent stem cell maintenance from EGF-dependent proliferation and cell fate choice, and provide an in vitro approach for the study of the elusive EECs. Overall design: We established a stable culture of quiescent Lgr5+ intestinal stem cells in culture. These highly resemble quiescent secretory precursors, which has high EEC differentiation potential. Following on this lead, we elucidated what signals are required to generate EEC cells of all varieties, and provide a method to produce these EEC cells in large numbers.
Induced Quiescence of Lgr5+ Stem Cells in Intestinal Organoids Enables Differentiation of Hormone-Producing Enteroendocrine Cells.
Specimen part, Cell line, Subject
View Samples