We used a microarray to examine the global gene expression profile of MCF7 cells grown in 2D and 3D culture conditions. Our goal was to identify changes in the expression of genes that regulate iron metabolism when cellular spatial organization was altered.
Contribution of three-dimensional architecture and tumor-associated fibroblasts to hepcidin regulation in breast cancer.
Age, Specimen part, Cell line
View SamplesWe sequenced mRNA from 12 samples extracted from mouse amygdala tissue to generate the first amygdala-specific murine transcriptome for germ-free mice (GF), conventionally raised controls (CON) and germ-free mice that have been colonized with normal microbiota from postnatal day 21 (exGF). Overall design: Equal amounts of RNA from two to three animals were pooled to yield 4 samples per group (CON, GF, and exGF). Pairwise comparisons for CONvsGF, CONvsexGF, GFvsexGF were performed using DESeq2.
Microbes & neurodevelopment--Absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala.
No sample metadata fields
View SamplesDespite advances in contemporary chemotherapeutic strategies, long term survival still remains elusive for patients with metastatic colorectal cancer. A better understanding of the molecular markers of drug sensitivity to match therapy with patient is needed to improve clinical outcomes. In this study, we used in vitro drug sensitivity data from the NCI-60 cell lines together with their Affymetrix microarray data to develop a gene expression signature to predict sensitivity to oxaliplatin. In order to validate our oxaliplatin sensitivity signature, Patient-Derived Colorectal Cancer Explants (PDCCEs) were developed in NOD-SCID mice from resected human colorectal tumors. Analysis of gene expression profiles found similarities between the PDCCEs and their parental human tumors, suggesting their utility to study drug sensitivity in vivo. The oxaliplatin sensitivity signature was then validated in vivo with response data from 14 PDCCEs treated with oxaliplatin and was found to have an accuracy of 92.9% (Sensitivity=87.5%; Specificity=100%). Our findings suggest that PDCCEs can be a novel source to study drug sensitivity in colorectal cancer. Furthermore, genomic-based analysis has the potential to be incorporated into future strategies to optimize individual therapy for patients with metastatic colorectal cancer.
Characterization of an oxaliplatin sensitivity predictor in a preclinical murine model of colorectal cancer.
No sample metadata fields
View SamplesThis study is part of a larger multidisciplinary study entitled A dormant sub-population expressing interleukin-1 receptor characterises anti-estrogen resistant ALDH+ breast cancer stem cells.
Increased Expression of Interleukin-1 Receptor Characterizes Anti-estrogen-Resistant ALDH<sup>+</sup> Breast Cancer Stem Cells.
Specimen part, Disease, Subject
View SamplesBacterial infections cause exaserbations in COPD. Study conducted to asses the effect of Nemiralisib, a PI3Kdelta inhibitor, on S. pneumoniae infected mice
PI3Kδ hyper-activation promotes development of B cells that exacerbate Streptococcus pneumoniae infection in an antibody-independent manner.
Specimen part, Time
View SamplesOrganoid technologies provide an accessible system in which to examine the generation, self-organization,and 3-dimensional cellular interactions during development of the human cerebral cortex. However, oligodendrocytes, the myelinating glia of the central nervous system and third major neural cell type, are conspicuously absent from current protocols. Here we reproducibly generate human oligodendrocytes and myelin in pluripotent stem cell-derived cortical spheroids. Transcriptional and immunohistochemical analysis of the spheroids demonstrates molecular features consistent with maturing human oligodendrocytes within 14 weeks of culture, including expression of MyRF, PLP1, and MBP proteins. Histological analysis by electron microscopy shows initial wrapping of human neuronal axons with myelin by 20 weeks and maturation to compact myelin by 30 weeks in culture. Treatment of spheroids with previously identified promyelinating drugs enhances the rate and extent of human oligodendrocyte generation and myelination. Furthermore, generation of spheroids from patients with a severe genetic myelin disorder, Pelizaeus-Merzbacher disease, demonstrates the ability to recapitulate human disease phenotypes, which were in turn improved with both pharmacologic and CRISPR-based approaches. Collectively, these 3-dimensional, multi-lineage cortical spheroids provide a versatile platform to observe and perturb the complex cellular interactions that occur during developmental myelination of the brain and offer new opportunities for disease modeling and therapeutic development in human tissue. Overall design: RNAseq profiles comparing neuro-cortical spheroids and oligo-cortical spheroids
Induction of myelinating oligodendrocytes in human cortical spheroids.
No sample metadata fields
View SamplesThe brain renin-angiotensin system (RAS) stimulates resting metabolic rate in part through a mechanism involving suppression of the circulating RAS. This effect appears to be mediated through a reduction in angiotensin AT2 receptor (AT2R) signaling within inguinal fat. To examine the molecular mechanisms underlying this effect, mice with hyperactivity of the brain RAS (“sRA” mice, expressing human renin via the synapsin promoter and human angiotensinogen via its own promoter) and littermate controls were chronically infused with vehicle or the AT2R specific agonist, CGP-42112a (CGP, 90 ng/hr, 8 wk, sc). To identify altered signaling pathways, total RNA was isolated from inguinal adipose tissue and transcript abundance was quantitated by RNA-Seq. Overall design: Four groups of mice were studied: controls receiving either a saline infusion (CON) or a specific angiotensin type 2 receptor agonist (CON_CGP), transgenic mice with specific activation of the brain renin-angiotensin receiving either a saline infusion (SRA) or a specific angiotensin type 2 receptor agonist (SRA_CGP). A sample size of N=3-4 was used for each of the four groups.
Suppression of Resting Metabolism by the Angiotensin AT2 Receptor.
Sex, Specimen part, Cell line, Subject
View SamplesFine control of macrophage activation is required to prevent inflammatory disease, particularly at barrier sites such as the lung. However, the dominant mechanisms that regulate pulmonary MFs during inflammation are currently poorly understood. Here we show that airway MFs are substantially less able to respond to the canonical type-2 cytokine IL-4, which underpins allergic disease and parasite worm infections, than lung tissue or peritoneal cavity MFs. We reveal that MF hypo-responsiveness to IL-4 is dictated by the lung environment, though independent of the host microbiota or the prominent lung extracellular matrix components surfactant protein D and mucin 5b. Rather, compared to cavity MFs, airway MFs display severely dysregulated metabolism. Strikingly, upon removal from the lung, alveolar MFs regain IL-4 responsiveness in a process dependent upon glycolysis. Thus, we propose that impaired glycolysis within the pulmonary niche is a central determinant for regulation of MF responsiveness during type-2 inflammation. Overall design: The 13 analysed samples belong to 6 different groups, each group consisted of 2 or 3 samples. The groups consist of 3 separate macrophage populations, from either control or IL-4 complex treated mice. Each individual sample was generated from 3-5 pooled biological replicate mice.
The lung environment controls alveolar macrophage metabolism and responsiveness in type 2 inflammation.
Treatment, Subject
View SamplesLiver injury results in rapid regeneration through hepatocyte proliferation and hypertrophy. However, after acute severe injury, such as acetaminophen poisoning, effective regeneration may fail. We investigated how senescence underlies this regenerative failure. In human acute liver disease, and murine models, p21-dependent hepatocellular senescence was proportionate to disease severity and was associated with impaired regeneration. In an acetaminophen injury model a transcriptional signature associated with the induction of paracrine senescence is observed within twenty four hours, and is followed by one of impaired proliferation. In genetic models of hepatocyte injury and senescence we observed transmission of senescence to local uninjured hepatocytes. Spread of senescence depended upon macrophage derived TGFß1 ligand. In acetaminophen poisoning inhibition of TGFß receptor 1 (TGFßR1) improved survival. TGFßR1 inhibition reduced senescence and enhanced liver regeneration even when delivered after the current therapeutic window. This mechanism, in which injury induced senescence impairs regeneration, is an attractive therapeutic target for acute liver failure. Overall design: RNA-seq analysis was performed on a total of 24 samples extracted from murine liver, post hepatic injury induced by acetaminophen administration. Transcriptional profiles were from replicate samples generated at defined timepoints - 12, 24, 36, 48 and 72 hours post injury. Replicate samples were generated from 4 individual animals sacrificed at each timepoint, and compared to a control cohort of 4 animals not subjected to acetaminophen treatment.
TGFβ inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence.
Specimen part, Cell line, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Non-overlapping progesterone receptor cistromes contribute to cell-specific transcriptional outcomes.
Specimen part, Cell line
View Samples