Gene expression was compared between four B-cell derived HL cell lines (L428, L1236, L591, KMH2) and GC B cells from three different patients.
The Epstein-Barr virus oncoprotein, latent membrane protein-1, reprograms germinal centre B cells towards a Hodgkin's Reed-Sternberg-like phenotype.
No sample metadata fields
View SamplesIn this study, we have investigated the effect of LMP1 on gene expression in normal human GC B cells using a non-viral vector based system
The Epstein-Barr virus oncoprotein, latent membrane protein-1, reprograms germinal centre B cells towards a Hodgkin's Reed-Sternberg-like phenotype.
No sample metadata fields
View SamplesNasopharyngeal carcinoma (NPC) is a common cancer in southern China and South East Asia where more than 50,000 new cases are diagnosed each year.
The ATM tumour suppressor gene is down-regulated in EBV-associated nasopharyngeal carcinoma.
Disease, Disease stage
View SamplesRight ventricular dysfunction (RVD) independently predicts worse outcomes in both heart failure (HF) and pulmonary hypertension (PH), irrespective of their etiologies. Yet no evidence-based therapies exist for RVD and progression towards RV failure (RVF) can occur in spite of optimal medical treatment of HF or PH. This disparity reflects our insufficient understanding of the molecular pathophysiology of RVF. To identify molecular mechanisms that may uniquely underlie RVF, we investigated the cardiac ventricular transcriptome of advanced HF patients, with and without RVF. Using weighted gene co-expression network and module-phenotype analyses, we identified a 279-member gene module that correlated significantly and specifically with RVF. Within this module, WIPI1 served as a genetic hub, HSPB6, SNAP47, and MAP4 as drivers, and PRDX5 as a repressor of RVF. We subsequently confirmed the ventricular specificity and temporal relationship of Wipi1, Hspb6, and Map4 transcript expression changes in murine models of pressure overload induced RV failure versus LV failure and subsequently uncovered differential dysregulation of autophagy in the failing RV versus the failing LV, namely a shift towards excessive non-canonical, Beclin1-independent, Wipi1/LC3II-mediated autophagy in RVF. In vitro siRNA silencing of Wipi1 partially protected isolated neonatal rat ventricular cardiac myocytes against aldosterone-induced failing phenotype. Moreover, silencing Wipi1 blunted mitochondrial superoxide production and limited non-canonical autophagy in this in vitro RVF model. Our findings suggest that Wipi1 regulates mitochondrial oxidative signaling and autophagy in cardiac myocytes. Inhibition of Wipi1 may hold promise as a therapeutic target for RVF. Overall design: Examination of RNAseq results from Left and Right Ventricles of 15 individuals, 5 control, 5 left-sided Heart Failure, 5 bi-ventricular Heart Failure
WIPI1 is a conserved mediator of right ventricular failure.
Specimen part, Subject
View SamplesTrans-splicing is a post-transcriptional event that joins exons from separate pre-mRNAs. Detection of trans-splicing is usually severely hampered by experimental artifacts and genetic rearrangements. Here, we develop a new computational pipeline, TSscan, which integrates different types of high-throughput long-/short-read transcriptome sequencing of different human embryonic stem cell (hESC) lines to effectively minimize false positives while detecting trans-splicing. Combining TSscan screening with multiple experimental validation steps revealed that most chimeric RNA products were platform-dependent experimental artifacts of RNA sequencing. We successfully identified and confirmed four trans-spliced RNAs, including the first reported trans-spliced large intergenic noncoding RNA ("tsRMST"). We showed that these trans-spliced RNAs were all highly expressed in human pluripotent stem cells and differentially expressed during hESC differentiation. Our results further indicated that tsRMST can contribute to pluripotency maintenance of hESCs by suppressing lineage-specific gene expression through the recruitment of NANOG and the PRC2 complex factor, SUZ12. Taken together, our findings provide important insights into the role of trans-splicing in pluripotency maintenance of hESCs and help to facilitate future studies into trans-splicing, opening up this important but understudied class of post-transcriptional events for comprehensive characterization
Integrative transcriptome sequencing identifies trans-splicing events with important roles in human embryonic stem cell pluripotency.
Specimen part
View SamplesGene expression profiling of primary mouse articular chondrocyte infected with recombinant adenovirus expressing the zinc transporter ZIP8 (SLC39A8) protein.
Pleiotropic roles of metallothioneins as regulators of chondrocyte apoptosis and catabolic and anabolic pathways during osteoarthritis pathogenesis.
Age, Specimen part, Treatment
View SamplesWe report global gene expression profilies of Brassinosteroid related Arabidopsis mutants in response to dehydration and fixed-carbon starvation stresses by RNA-seq Overall design: Arabidopsis plants of listed genotypes were grown for 4 weeks under long day (16 hour light) conditions before being subjected to control, 4 hour dehydration, or 5 day fixed carbon starvation treatments.
Arabidopsis WRKY46, WRKY54, and WRKY70 Transcription Factors Are Involved in Brassinosteroid-Regulated Plant Growth and Drought Responses.
Specimen part, Treatment, Subject
View SamplesThe underlying change of gene network expression of Guillain-Barre syndrome (GBS) remains elusive. We sought to identify GBS-associated gene networks and signalling pathways by analyzing the transcriptional profile of leukocytes in the patients with GBS.
Identification of gene networks and pathways associated with Guillain-Barré syndrome.
Sex, Age, Specimen part, Race
View SamplesWe performed knockdown of circARID1A, overexpression of circARID1A and overexpression of miR-204-3p in ReNcell, independently. The 22,480 gene expression changes were examined by microarray analysis.
Genome-wide, integrative analysis of circular RNA dysregulation and the corresponding circular RNA-microRNA-mRNA regulatory axes in autism.
Cell line
View SamplesThe feather follicle is a “professional” regenerative organ that undergoes natural cycling and, regeneration after wound plucking. Similar to mammalian hair follicle, dermal papilla (DP) controls feather regeneration, shape, size, and axis. Here we report gene expression profiling for feather DP at different growth stages. For growth phase, we compared gene expression of DP, the ramogenic zone of feather branching epithelium (Erz) and the mesenchymal pulp (Pp). We also compared gene expression of DP at resting phase. To characterize the feather regeneration process, we further profiled gene expression at Day-2 and Day-4 post wound. Our results provide a resource for investigating feather growth and regeneration. Overall design: Examination of gene expression in dermal papilla (DP) at growth phase and resting phase feather follicle, and during feather regeneration.
Dkk2/Frzb in the dermal papillae regulates feather regeneration.
Specimen part, Subject
View Samples