Cells that have been pre-exposed to mild stress (priming stress) acquire transient resistance to subsequent severe stress even under different combinations of stresses. This phenomenon is called cross-tolerance. Although it has been reported that cross-tolerance occurs in many organisms, the molecular basis is not clear yet. Here, we identified slm9+ as a responsible gene for the cross-tolerance in the fission yeast Schizosaccharomyces pombe. Slm9 is a homolog of mammalian HIRA histone chaperone. HIRA forms a conserved complex and gene disruption of other HIRA complex components, Hip1, Hip3, and Hip4, also yielded a cross-tolerance-defective phenotype, indicating that the fission yeast HIRA is involved in the cross-tolerance as a complex. We also revealed that Slm9 was recruited to the stress-responsive gene loci upon stress treatment in an Atf1-dependent manner. The expression of stress-responsive genes under stress conditions was compromised in HIRA disruptants. Consistent with this, Pol II recruitment and nucleosome eviction at these gene loci were impaired in slm9D cells. Furthermore, we found that the priming stress enhanced the expression of stress-responsive genes in wild-type cells that were exposed to the severe stress. These observations suggest that HIRA functions in stress response through transcriptional regulation.
HIRA, a conserved histone chaperone, plays an essential role in low-dose stress response via transcriptional stimulation in fission yeast.
No sample metadata fields
View SamplesWe devised a novel improved RNA extraction method, and performed total RNA-seq to determine the effect of improved RNA extraction. Overall design: Examination of total RNAs that were derived from the same cell/TRI Reagent solution, split into two and extracted by either a conventional or improved RNA extraction method. Hokkaido System Science, Co.
Unusual semi-extractability as a hallmark of nuclear body-associated architectural noncoding RNAs.
Subject
View SamplesThis study explored the role of the growth hormone (GH) / insulin-like growth factor 1 (IGF-1) axis on the life-long caloric restriction (CR)-associated remodeling of white adipose tissue (WAT). Adipocyte size and gene expression profiles, using high-density oligonucleotide microarrays, were analyzed in WAT of six- to seven-month old wild Wistar rats fed ad libitum (AL) or subjected to a 30% caloric restriction (CR), and heterozygous transgenic dwarf rats bearing an anti-sense GH transgene fed ad libitum (Tg). While not significant in Tg rats, adipocyte size was significantly reduced in CR rats compared with AL rats. The microarray data based on the principal component analysis demonstrated that the gene expression profile of CR rats markedly differed from the AL rats, while Tg hardly differed, suggesting that CR-associated WAT remodeling was predominantly regulated in a GH/IGF-1-independent manner. The gene cluster with the largest change induced by CR included several genes involved in lipid biosynthesis and inflammation. Moreover, many of the genes transcriptionally regulated by sterol regulatory element binding proteins (SREBPs) were found in the cluster related to lipid biosynthesis. Real-time reverse transcription polymerase chain reaction analysis confirmed that the expression of SREBP-1 and its down-stream targets was particularly up-regulated in CR rats compared with SREBP-2 and its down-stream targets. Our findings suggest that SREBP-1 is a major transcription factor in CR-associated remodeling of WAT, and might be one of the key regulators of the anti-aging and pro-longevity effects of CR.
Caloric restriction-associated remodeling of rat white adipose tissue: effects on the growth hormone/insulin-like growth factor-1 axis, sterol regulatory element binding protein-1, and macrophage infiltration.
Age, Specimen part
View SamplesTrans-splicing is a post-transcriptional event that joins exons from separate pre-mRNAs. Detection of trans-splicing is usually severely hampered by experimental artifacts and genetic rearrangements. Here, we develop a new computational pipeline, TSscan, which integrates different types of high-throughput long-/short-read transcriptome sequencing of different human embryonic stem cell (hESC) lines to effectively minimize false positives while detecting trans-splicing. Combining TSscan screening with multiple experimental validation steps revealed that most chimeric RNA products were platform-dependent experimental artifacts of RNA sequencing. We successfully identified and confirmed four trans-spliced RNAs, including the first reported trans-spliced large intergenic noncoding RNA ("tsRMST"). We showed that these trans-spliced RNAs were all highly expressed in human pluripotent stem cells and differentially expressed during hESC differentiation. Our results further indicated that tsRMST can contribute to pluripotency maintenance of hESCs by suppressing lineage-specific gene expression through the recruitment of NANOG and the PRC2 complex factor, SUZ12. Taken together, our findings provide important insights into the role of trans-splicing in pluripotency maintenance of hESCs and help to facilitate future studies into trans-splicing, opening up this important but understudied class of post-transcriptional events for comprehensive characterization
Integrative transcriptome sequencing identifies trans-splicing events with important roles in human embryonic stem cell pluripotency.
Specimen part
View SamplesGene expression profiling of primary mouse articular chondrocyte infected with recombinant adenovirus expressing the zinc transporter ZIP8 (SLC39A8) protein.
Pleiotropic roles of metallothioneins as regulators of chondrocyte apoptosis and catabolic and anabolic pathways during osteoarthritis pathogenesis.
Age, Specimen part, Treatment
View SamplesWe report global gene expression profilies of Brassinosteroid related Arabidopsis mutants in response to dehydration and fixed-carbon starvation stresses by RNA-seq Overall design: Arabidopsis plants of listed genotypes were grown for 4 weeks under long day (16 hour light) conditions before being subjected to control, 4 hour dehydration, or 5 day fixed carbon starvation treatments.
Arabidopsis WRKY46, WRKY54, and WRKY70 Transcription Factors Are Involved in Brassinosteroid-Regulated Plant Growth and Drought Responses.
Specimen part, Treatment, Subject
View SamplesThe underlying change of gene network expression of Guillain-Barre syndrome (GBS) remains elusive. We sought to identify GBS-associated gene networks and signalling pathways by analyzing the transcriptional profile of leukocytes in the patients with GBS.
Identification of gene networks and pathways associated with Guillain-Barré syndrome.
Sex, Age, Specimen part, Race
View SamplesWe performed knockdown of circARID1A, overexpression of circARID1A and overexpression of miR-204-3p in ReNcell, independently. The 22,480 gene expression changes were examined by microarray analysis.
Genome-wide, integrative analysis of circular RNA dysregulation and the corresponding circular RNA-microRNA-mRNA regulatory axes in autism.
Cell line
View SamplesThe feather follicle is a “professional” regenerative organ that undergoes natural cycling and, regeneration after wound plucking. Similar to mammalian hair follicle, dermal papilla (DP) controls feather regeneration, shape, size, and axis. Here we report gene expression profiling for feather DP at different growth stages. For growth phase, we compared gene expression of DP, the ramogenic zone of feather branching epithelium (Erz) and the mesenchymal pulp (Pp). We also compared gene expression of DP at resting phase. To characterize the feather regeneration process, we further profiled gene expression at Day-2 and Day-4 post wound. Our results provide a resource for investigating feather growth and regeneration. Overall design: Examination of gene expression in dermal papilla (DP) at growth phase and resting phase feather follicle, and during feather regeneration.
Dkk2/Frzb in the dermal papillae regulates feather regeneration.
Specimen part, Subject
View SamplesThe gene expression of bone marrow Hdc-/- and WT (LSK, Lin-c-kit+Sca-1+) hematopoetic stem and progenitor cells were isolated from Hdc-/- or WT mice. Cells were sorted by the cell surface markers of LSK total RNA was isolated from sorted 2,000 HSPCs using the ARCTURUS PicoPure RNA isolation kit (Life Technologies). cDNA was amplified and libraries were constructed by using the SMARTer Ultra Low Input RNA kit (Clontech Laboratories) and the Nextera XT DNA Library Preparation kit (Illumina) according to the respective manufacturer's instructions. Sequencing was performed on the Illumina HiSeq2500 platform. Overall design: a. Hdc-/- bone marrow HSPC (n=4) b. WT bone marrow HSPC (n=4)
Histidine decarboxylase (HDC)-expressing granulocytic myeloid cells induce and recruit Foxp3<sup>+</sup> regulatory T cells in murine colon cancer.
Specimen part, Subject
View Samples