Recent reports have proposed a new paradigm for obtaining mature somatic cell types from fibroblasts without going through a pluripotent state, by briefly expressing canonical iPSC reprogramming factors Oct4, Sox2, Klf4 and c-Myc (abbreviated as OSKM), in cells expanded in lineage differentiation promoting conditions. Here we apply genetic lineage tracing for endogenous Nanog, Oct4 and X chromosome reactivation during OSKM induced trans-differentiation, as these molecular events mark final stages for acquisition of induced pluripotency. Remarkably, the vast majority of reprogrammed cardiomyocytes or neural stem cells derived from mouse fibroblasts via OSKM mediated trans-differentiation were attained after transient acquisition of pluripotency, and followed by rapid differentiation. Our findings underscore a molecular and functional coupling between inducing pluripotency and obtaining “trans-differentiated” somatic cells via OSKM induction, and have implications on defining molecular trajectories assumed during different cell reprogramming methods. Overall design: poly RNA-Seq was measured before, during and after conversion of mouse embryonic fibroblasts to neural stem cells using OSKM trans-differentiation method.
Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Corrigendum: Deterministic direct reprogramming of somatic cells to pluripotency.
Specimen part
View SamplesSomatic cells can be directly reprogrammed to pluripotency by exogenous expression of transcription factors, classically Oct4, Sox2, Klf4 and c-Myc. While distinct types of somatic cells can be reprogramed with varying efficiencies and by different modified reprogramming protocols, induced pluripotent stem cell (iPSC) induction remains inefficient and stochastic where a fraction of the cells converts into iPSCs. The nature of rate limiting barrier(s) preventing majority of cells to convert into iPSCs remains elusive. Here we show that neutralizing Mbd3, a core member of the Mbd3/NURD co-repressor and chromatin-remodeling complex, results in deterministic and synchronized reprogramming of multiple differentiated cell types to pluripotency. 100% of Mbd3 depleted mouse and human somatic cells convert into iPSCs after seven days of reprogramming factor induction. Our findings delineate a critical pathway blocking the reestablishment of pluripotency, and offer a novel platform for future dissection of epigenetic dynamics leading to iPSC formation at high resolution.
Deterministic direct reprogramming of somatic cells to pluripotency.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Derivation of novel human ground state naive pluripotent stem cells.
Specimen part, Cell line
View SamplesMouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3b signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters.Upon withdrawal of 2i/LIF, nave mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalency acquisition on lineage regulatory genes. The feasibility for establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in rodent ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively, our findings establish new avenues for regenerative medicine, patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo.
Derivation of novel human ground state naive pluripotent stem cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Protein disulfide isomerase inhibition synergistically enhances the efficacy of sorafenib for hepatocellular carcinoma.
Specimen part, Cell line
View SamplesSorafenib is the only approved targeted drug for hepatocellular carcinoma (HCC), but its effect on patients survival gain is limited and varies over a wide range depending on patho-genetic conditions. Thus, enhancing the efficacy of sorafenib and finding a reliable predictive biomarker are crucuial to achieve efficient control of HCCs. In this study, we employed a systems approach by combining transcriptome analysis of the mRNA changes in HCC cell lines in response to sorafenib with network analysis to investigate the action and resistance mechanism of sorafenib. Gene ontology and gene set analysis revealed that proteotoxic stress and apoptosis modules are activated in the presence of sorafenib. Further analysis of the endoplasmic reticulum (ER) stress network model combined with in vitro experiments showed that introducing an additional stress by treating the orally active protein disulfide isomerase (PDI) inhibitor (PACMA 31) can synergistically increase the efficacy of sorafenib in vitro and in vivo, which was confirmed using a mouse xenograft model. We also found that HCC patients with high PDI expression show resistance to sorafenib and poor clinical outcomes, compared to the low PDI expression group. These results suggest that PDI is a promising therapeutic target for enhancing the efficacy of sorafenib and can also be a biomarker for predicting sorafenib responsiveness.
Protein disulfide isomerase inhibition synergistically enhances the efficacy of sorafenib for hepatocellular carcinoma.
Specimen part, Cell line
View SamplesSorafenib is the only approved targeted drug for hepatocellular carcinoma (HCC), but its effect on patients survival gain is limited and varies over a wide range depending on patho-genetic conditions. Thus, enhancing the efficacy of sorafenib and finding a reliable predictive biomarker are crucuial to achieve efficient control of HCCs. In this study, we employed a systems approach by combining transcriptome analysis of the mRNA changes in HCC cell lines in response to sorafenib with network analysis to investigate the action and resistance mechanism of sorafenib. Gene ontology and gene set analysis revealed that proteotoxic stress and apoptosis modules are activated in the presence of sorafenib. Further analysis of the endoplasmic reticulum (ER) stress network model combined with in vitro experiments showed that introducing an additional stress by treating the orally active protein disulfide isomerase (PDI) inhibitor (PACMA 31) can synergistically increase the efficacy of sorafenib in vitro and in vivo, which was confirmed using a mouse xenograft model. We also found that HCC patients with high PDI expression show resistance to sorafenib and poor clinical outcomes, compared to the low PDI expression group. These results suggest that PDI is a promising therapeutic target for enhancing the efficacy of sorafenib and can also be a biomarker for predicting sorafenib responsiveness.
Protein disulfide isomerase inhibition synergistically enhances the efficacy of sorafenib for hepatocellular carcinoma.
Specimen part, Cell line
View SamplesSorafenib is the only approved targeted drug for hepatocellular carcinoma (HCC), but its effect on patients survival gain is limited and varies over a wide range depending on patho-genetic conditions. Thus, enhancing the efficacy of sorafenib and finding a reliable predictive biomarker are crucuial to achieve efficient control of HCCs. In this study, we employed a systems approach by combining transcriptome analysis of the mRNA changes in HCC cell lines in response to sorafenib with network analysis to investigate the action and resistance mechanism of sorafenib. Gene ontology and gene set analysis revealed that proteotoxic stress and apoptosis modules are activated in the presence of sorafenib. Further analysis of the endoplasmic reticulum (ER) stress network model combined with in vitro experiments showed that introducing an additional stress by treating the orally active protein disulfide isomerase (PDI) inhibitor (PACMA 31) can synergistically increase the efficacy of sorafenib in vitro and in vivo, which was confirmed using a mouse xenograft model. We also found that HCC patients with high PDI expression show resistance to sorafenib and poor clinical outcomes, compared to the low PDI expression group. These results suggest that PDI is a promising therapeutic target for enhancing the efficacy of sorafenib and can also be a biomarker for predicting sorafenib responsiveness.
Protein disulfide isomerase inhibition synergistically enhances the efficacy of sorafenib for hepatocellular carcinoma.
Specimen part, Cell line
View SamplesThe inverted teat defect is an inherited disorder characterised by the failure of teats to protrude from the udder surface. The number and identity of relevant genes are unknown.
Microarray analysis reveals genes and functional networks relevant to the predisposition to inverted teats in pigs.
Specimen part
View Samples