High quality RNA was extracted from the whole seedlings (Combined root and leaf samples) using TRI Reagent (Ambion, Inc. USA) and pooled from 12 independent stressed and non-stressed plant samples separately, and treated with DNase-I (QIAGEN GmbH, Germany). Subsequently, RNA cleanup was carried out using RNeasy Plant Mini Kit (QIAGEN GmbH, Germany) and 5 ug of total RNA from each sample in triplicates were reverse-transcribed to double stranded cDNA using the GeneChipᆴ One-Cycle cDNA Synthesis Kit. The biotin-labelled cRNA was made using the GeneChipᆴ IVT Labelling Kit (Affymetrix, CA, USA). Twenty microgram of cRNA samples was fragmented and out of which which 7.5 ug cRNA were hybridized for 16 hours at 45C to the Affymetrix GeneChipᆴ Rice Genome Array (Santa Clara, CA, USA). After washing and staining with R-phycoerythrin streptavidin in a Fluidics Station, using the Genechipᆴ Fluidics Station 450, the arrays were scanned by the Genechipᆴ 3000 Scanner. The chip images were scanned and extracted using default settings and the CEL files were produced with the Affymetrix GeneChip Operating Software (GCOS 1.2). The resulting .CEL files were imported into the GeneSpring GX 10 (Agilent Technologies Inc, Santa Clara CA) and normalized with the PLIER16 algorithm. The resulting expression values were log2-transformed. Average log signal intensity values of three technical replicates for each sample were used for advance analysis.
Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance.
Specimen part
View SamplesTwenty one day old seedlings of the mutant and WT grown in hydroponic culture in three replications were subjected to 25% PEG stress for one hour. The leaf samples of stressed and control seedlings were collected and preserved in liquid nitrogen for RNA isolation. Total RNA from four samples i.e. mutant control (MC), mutant stress (MS), Nagina22 control (NC) and Nagina22 stress (NS) was extracted by following the manufacturer‰۪s instructions provided with SV Total RNA isolation system Kit (PROMEGA, USA). All the steps starting from cRNA preparation to hybridization were conducted following the instructions of Affymetrix (AffymetrixGeneChip Expression Analysis Technical Manual). Chips were washed and stained in the Affymetrix Fluidics Station 450, and then scanned using the Affymetrix Gene Chip Scanner 3000. The cell intensity data files (.CEL) generated by the Gene Chip Operating Software (GCOS 1.2).
Physiological, anatomical and transcriptional alterations in a rice mutant leading to enhanced water stress tolerance.
Specimen part
View SamplesNext Generation Sequencing technologies have enabled de novo gene fusion discovery that could reveal candidates with therapeutic significance in cancer. Here we present an open-source software package, ChimeraScan, for the discovery of chimeric transcription between two independent transcripts. Overall design: Three cancer cell lines with known gene fusions
ChimeraScan: a tool for identifying chimeric transcription in sequencing data.
No sample metadata fields
View SamplesProfiling of MCF-7 cell lines stably overexpressing constitutively active Raf-1, constitutively active MEK, constitutively active c-erbB-2, or ligand-activatable EGFR as models of overexpressed growth factor signaling, as well as control vector transfected cells (coMCF-7) and control vector transfected cells long-term adapted for estrogen-independent growth (coMCF-7/lt-E2).
Activation of mitogen-activated protein kinase in estrogen receptor alpha-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor alpha-negative human breast tumors.
Cell line
View SamplesAndrogen receptor (AR) is a ligand-dependent transcription factor that plays a key role in the onset and progression of prostate cancer. Surprisingly little is known of AR binding sites and collaborating transcription factors in the human genome. Here we have identified the DNA sequence motifs that are significantly enriched within the authentic 90 AR target regions found on chromosomes 21 and 22 in human prostate cancer cells by combining chromatin immunoprecipitation for AR with chromosome-scale tiled oligonucleotide microarrays. By integrating the DNA sequence motif data with the gene expression profiles from human prostate cancers we identified the transcription factors that recognize each of these motifs. These factors form complexes with AR, bind to specific AR target regions and govern androgen-dependent transcription. Together with AR these collaborating transcription factors form a regulatory network that directs prostate cancer growth and survival and identify potential new opportunities for therapeutic intervention.
A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth.
No sample metadata fields
View SamplesAndrogens are required for the development of normal prostate, and they are also linked to the development of prostate cancer.
Proteomic interrogation of androgen action in prostate cancer cells reveals roles of aminoacyl tRNA synthetases.
Specimen part, Cell line
View SamplesMitochondrial DNA (mtDNA) mutations cause inherited diseases and are implicated in the pathogenesis of common late-onset disorders, but it is not clear how they arise and propagate in the humans. Here we show that mtDNA mutations are present in primordial germ cells (PGCs) within healthy female human embryos. Close scrutiny revealed the signature of selection against non-synonymous variants in the protein-coding region, tRNA gene variants, and variants in specific regions of the non-coding D-loop. In isolated single PGCs we saw a profound reduction in the cellular mtDNA content, with discrete mitochondria containing ~5 mtDNA molecules during early germline development. Single cell deep mtDNA sequencing showed rare variants reaching higher heteroplasmy levels in later PGCs, consistent with the observed genetic bottleneck, and predicting >80% levels within isolated organelles. Genome-wide RNA-seq showed a progressive upregulation of genes involving mtDNA replication and transcription, linked to a transition from glycolytic to oxidative metabolism. The metabolic shift exposes deleterious mutations to selection at the organellar level during early germ cell development. In this way, the genetic bottleneck prevents the relentless accumulation of mtDNA mutations in the human population predicted by Muller's ratchet. Mutations escaping this mechanism will, however, show massive shifts in heteroplasmy levels within one human generation, explaining the extreme phenotypic variation seen in human pedigrees with inherited mtDNA disorders. Overall design: RNA-Seq and NGS analysis to investigate transcriptomes and mtDNA sequences of fetal hPGCs
Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos.
No sample metadata fields
View SamplesWe compare the performance of two library preparation protocols (poly(A) and exome capture) in in vitro degraded RNA samples Overall design: VcaP cell were grown, and treated with MDV3100 (enzalutamide) or DHT (dihydrotestosterone), intact RNA was isolated and samples were prepared in technical triplicates using two library preparation protocol. Also cells were subject to in vitro degradation through incubation of the whole cell lysate in 37C for increasing amounts of time. Following incbation paired capture and poly(A) libraries were prepared.
The use of exome capture RNA-seq for highly degraded RNA with application to clinical cancer sequencing.
No sample metadata fields
View SamplesPompe disease is caused by autosomal recessive mutations in the GAA gene, which encodes acid alpha-glucosidase. Although enzyme replacement therapy has recently improved patient survival greatly, the results in skeletal muscles and for advanced disease are still not satisfactory. Here, we report the derivation of Pompe disease induced pluripotent stem cells (PomD-iPSCs) and their potential for pathogenesis modeling, drug testing and disease marker identification. PomD-iPSCs maintained pluripotent features, and had low GAA activity and high glycogen content. Cardiomyocyte-like cells (CMLCs) differentiated from PomD-iPSCs recapitulated the hallmark Pompe disease pathophysiological phenotypes, including high levels of glycogen, abundant intracellular LAMP-1- or LC3-positive granules, and multiple ultrastructural aberrances. Drug rescue assessment showed that exposure of PomD-iPSC-derived CMLCs to rhGAA reversed the major pathologic phenotypes. Further, L-carnitine and 3- methyladenine treatment reduced defective cellular respiration and buildup of phagolysosomes, respectively, in the diseased cells. By comparative transcriptome analysis, we identified glycogen metabolism, lysosome and mitochondria related marker genes whose expression robustly correlated with the therapeutic effect of drug treatment in PomD-iPSC-derived CMLCs. Collectively, these results demonstrate that PomD-iPSCs are a promising in vitro disease model for development of novel therapeutic strategies for Pompe disease.
Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification.
Specimen part
View SamplesStevens-Johnson syndrome (SJS) and toxic epidermal necrolysis
Granulysin is a key mediator for disseminated keratinocyte death in Stevens-Johnson syndrome and toxic epidermal necrolysis.
No sample metadata fields
View Samples