Pompe disease is caused by autosomal recessive mutations in the GAA gene, which encodes acid alpha-glucosidase. Although enzyme replacement therapy has recently improved patient survival greatly, the results in skeletal muscles and for advanced disease are still not satisfactory. Here, we report the derivation of Pompe disease induced pluripotent stem cells (PomD-iPSCs) and their potential for pathogenesis modeling, drug testing and disease marker identification. PomD-iPSCs maintained pluripotent features, and had low GAA activity and high glycogen content. Cardiomyocyte-like cells (CMLCs) differentiated from PomD-iPSCs recapitulated the hallmark Pompe disease pathophysiological phenotypes, including high levels of glycogen, abundant intracellular LAMP-1- or LC3-positive granules, and multiple ultrastructural aberrances. Drug rescue assessment showed that exposure of PomD-iPSC-derived CMLCs to rhGAA reversed the major pathologic phenotypes. Further, L-carnitine and 3- methyladenine treatment reduced defective cellular respiration and buildup of phagolysosomes, respectively, in the diseased cells. By comparative transcriptome analysis, we identified glycogen metabolism, lysosome and mitochondria related marker genes whose expression robustly correlated with the therapeutic effect of drug treatment in PomD-iPSC-derived CMLCs. Collectively, these results demonstrate that PomD-iPSCs are a promising in vitro disease model for development of novel therapeutic strategies for Pompe disease.
Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification.
Specimen part
View SamplesRetinal ganglion cells (RGCs) and retinal pigment epithelium (RPE) cells are two retinal cell types that are affected by the most prevalent retinal diseases leading to irreversible blindness, such as glaucoma affecting the former and age-related macular degeneration affecting the latter. One of the most promising approaches for the therapy of these diseases is via the autologous transplantation of RGC or RPE cells derived from the induced pluripotent stem cells (iPSCs). This emphasizes the importance of detailed characterization and understanding of the mechanisms of differentiation of iPSCs into retinal lineages on the genome-wide scale. Such information can be used to identify novel crucial regulators of differentiation, optimisation of differentiation protocols to make them more efficient and safe, identification of novel specific biomarker signatures of differentiated cells. In this study, we performed the genome-wide transcriptome analysis of terminally differentiated RGC and RPE lineages, as well as intermediate retinal progenitor cells (RPCs) of optic vesicles (OVs) derived from the human induced pluripotent stem cells (iPSCs). In our analysis we specifically focused on the classes of transcripts that encode regulators of gene expression, such as transcription factors, epigenetic factors, and components of signaling pathways.
Expression profiling of cell-intrinsic regulators in the process of differentiation of human iPSCs into retinal lineages.
Specimen part
View SamplesCompared the global gene expression profiles of HD- and CON-iPSC-derived neurons
Elucidating the role of the A2A adenosine receptor in neurodegeneration using neurons derived from Huntington's disease iPSCs.
Sex, Age, Specimen part
View SamplesThe arabidopsis L-type lectin receptor kinase-VI.2 positively regulates bacterial PAMP-triggered immunity.
The lectin receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity.
Specimen part
View Samplesanti-CD4, CD8 and CD40L treated versus control murine CD4+ T cells from micegrafted with hESC derived xenografts.
Tolerance induction to human stem cell transplants with extension to their differentiated progeny.
Specimen part
View SamplesMounting evidence points to a link between a cancer possessing stem-like properties and a worse prognosis. To understand the biology, a common approach is to integrate network biology with signal processing mechanics. That said, even with the right tools, predicting the risk for a highly susceptible target using only a handful of gene signatures remains very difficult. By compiling the expression profiles of a panel of tumor stem-like cells (TSLCs) originating in different tissues, comparing these to their parental tumor cells (PTCs) and the human embryonic stem cells (hESCs), and integrating network analysis with signaling mechanics, we propose that network topologically-weighted signaling processing measurements under tissue-specific conditions can provide scalable and predicable target identification.
Network biology of tumor stem-like cells identified a regulatory role of CBX5 in lung cancer.
Specimen part
View SamplesKDM4B, an important epigenetic regulator of cell proliferation, metastasis and genome stability, is often overexpressed in gastric cancer. Notably, elevated expression of KDM4B is associated with a poor clinical outcome. A global transcriptomic analysis between KDM4B control and KDM4B-knockdown AGS cells without or with Helicobacter pylori challenge reveals differentially expressed genes involved in response to virus, multi-organism process, and response to stimulus, suggesting KDM4B as an inducible epigenetic factor under H. pylori challenge.
KDM4B is a coactivator of c-Jun and involved in gastric carcinogenesis.
Specimen part, Cell line, Treatment
View SamplesTo obtain a comprehensive genomic profile of presenting multiple myeloma cases we performed high resolution single nucleotide polymorphism (SNP) mapping array analysis in 114 samples alongside 258 samples analysed by U133 Plus 2.0 expression array (Affymetrix). We examined DNA copy number alterations and loss of heterozygosity (LOH) in order to define the spectrum of minimally deleted regions in which relevant genes of interest can be found. The most frequent deletions are located at 1p (30%), 6q (33%), 8q (25%), 12 (22%), 13q (59%), 14q (39%), 16q (35%), 17p (7%), 20 (12%) and 22 (18%). In addition, copy number-neutral LOH, or uniparental disomy, was also prevalent on 1q (8%), 16q (9%), and X (20%), and was associated with regions of gain and loss. Based on fluorescent in situ hybridisation (FISH) and expression quartile analysis, genes of prognostic importance were found to be located at 1p (FAF1, CDKN2C), 1q (ANP32E), and 17p (TP53). In addition, we identified common homozygously deleted genes which have functions relevant to myeloma biology. Taken together, the dysregulated genes from the myeloma genome indicate that the crucial pathways in myeloma pathogenesis include the NF-?B pathway, apoptosis, cell-cycle regulation and Wnt signalling.
Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma.
Specimen part
View SamplesChimeric antigen receptor (CAR)-expressing T-cells induce durable remissions in patients with relapsed/refractory B-cell malignancies. CARs are artificial constructs introduced into mature T-cells conferring a second, non-MHC restricted specificity in addition to the endogenous T-cell receptor (TCR). The impact of TCR activation on CAR T-cell efficacy in vivo has important implications for clinical optimization of CAR T-cell therapy, but cannot be systematically evaluated in xenograft models. Using an immunocompetent, syngeneic murine model of CD19-targeted CAR T-cell therapy for pre-B cell ALL, we demonstrate loss of CD8 CAR T-cell mediated clearance of leukemia associated with T-cell exhaustion and apoptosis when TCR antigen is present. CD4 CAR T-cells demonstrate equivalent cytotoxicity, as compared to CD8 CAR T-cells, and in contrast, retain in vivo efficacy in the presence of TCR stimulation. Gene expression profiles confirm increased exhaustion and apoptosis of CAR8 upon dual receptor stimulation compared to CAR4, and indicate inherent differences in T-cell pathways.
TCR engagement negatively affects CD8 but not CD4 CAR T cell expansion and leukemic clearance.
Specimen part, Treatment
View SamplesRNA sequencing of tumor transcriptomes
Robust gene expression and mutation analyses of RNA-sequencing of formalin-fixed diagnostic tumor samples.
No sample metadata fields
View Samples