We report transcriptome of Klf9-OE PGC by RNA-seq Overall design: RNA-seq of Klf9-OE clutured for one day in bFGF containing GS medium by using Illumina HiSeq2500.
Identification of KLF9 and BCL3 as transcription factors that enhance reprogramming of primordial germ cells.
Specimen part, Subject
View SamplesIn lymphocyte lineages, mucosa-associated lymphoid tissue 1 (MALT1) mediates the nuclear factor-B activation signal that stimulates progression of malignant tumors. However, its expression is inactivated in oral carcinoma patients with worse prognosis. Unveiling genes under the control of MALT1 will provide valuable information for understanding of the mechanism of carcinoma progression.
Inhibition of TGF-β and EGF pathway gene expression and migration of oral carcinoma cells by mucosa-associated lymphoid tissue 1.
Specimen part, Cell line
View SamplesCD4+ cells from Foxp3.eGFP mice containing Foxp3- Teff and Foxp3+ Treg cells were treated with anti-CD3/CD28 monoclonal antibodies or soluble OX40L and JAG1 for 3 days to induce TCR-dependent vs TCR-independent Treg proliferation. Untreated fresh CD4+ T-cells used as control. Post treatment T-cell proliferation was confirmed by Cell Trace violet dilution and Foxp3+ (Treg) and Foxp3-(Teff) were sorted. Differential gene expression profiling between Tregs and Teff cells among control, anti-CD3/CD28 and OX40L-JAG1 treated cultured was performed using affymetrix mouse gene 2.0 ST micro array.
OX40L-JAG1-Induced Expansion of Lineage-Stable Regulatory T Cells Involves Noncanonical NF-κB Signaling.
Specimen part, Treatment
View SamplesMicroglial morphology is tightly associated with aspects of their functions during the postnatal stage. It is affected by not only intrinsic cues but also external factors.
Atypical Cadherin FAT3 Is a Novel Mediator for Morphological Changes of Microglia.
Treatment
View SamplesTo evaluate the effect of Hypoxia-inducible factor 1-alpha inhibitor (HIF-1) in nucleus pulposus (NP) cells, human NP cells were lentivirally transduced with either control or FIH-1 targeted shRNA. Gene expression changes between samples from control and FIH-1 silenced cells were evaluated using a microarray.
FIH-1-Mint3 axis does not control HIF-1 transcriptional activity in nucleus pulposus cells.
Specimen part
View SamplesControl of mRNA half-life is a powerful strategy to adjust individual mRNA levels to various stress conditions, because the mRNA degradation rate controls not only the steady-state mRNA level but also the transition speed of mRNA levels. Here, we analyzed mRNA half-life changes in response to cold stress in Arabidopsis cells using genome-wide analysis, in which mRNA half-life measurements and transcriptome analysis were combined. Half-lives of average transcripts were determined to be elongated under cold conditions. Taking this general shift into account, we identified more than a thousand transcripts that were classified as relatively stabilized or relatively destabilized. The relatively stabilized class was predominantly observed in functional categories that included various regulators involved in transcriptional, post-transcriptional and post-translational processes. On the other hand, the relatively destabilized class was enriched in categories related to stress and hormonal response proteins, supporting the idea that rapid decay of mRNA is advanta- geous for swift responses to stress. In addition, pentatricopeptide repeat, cyclin-like F-box and Myb transcription factor protein families were significantly over-represented in the relatively destabilized class. The global analysis presented here demonstrates not only the importance of mRNA turn-over control in the cold stress response but also several structural characteristics that might be important in the control of mRNA stability.
Changes in mRNA stability associated with cold stress in Arabidopsis cells.
Cell line
View SamplesActing downstream of many growth factors, extracellular signal-regulated kinase (ERK) plays a pivotal role in regulating cell proliferation and tumorigenesis, where its spatiotemporal dynamics, as well as its strength, determine cellular responses. Here, we uncover the ERK activity dynamics in intestinal epithelial cells (IECs) and their association with tumour characteristics. In vivo imaging identified two distinct modes of ERK activity, sustained and pulse-like activity, in IECs. The sustained and pulse-like activity depended on ErbB2 and EGFR, respectively. Notably, deregulated activation of Wnt signalling, the earliest event in intestinal tumorigenesis, augmented EGFR signalling and exalted it to a dominant driver of ERK activity dynamics, which rendered IECs addicted to EGFR signalling. Furthermore, the frequency of ERK activity pulses was also increased to promote cell proliferation. Thus, ERK activity dynamics are defined by composite inputs from EGFR and ErbB2 signalling in IECs and their alterations underlie tumour-specific sensitivity to pharmacological EGFR inhibition. In this microarray analysis, we aimed to elucidate molecular mechanisms that mediate Wnt signalling activation-induced alterations in EGFR-ERK signalling dynamics.
Composite regulation of ERK activity dynamics underlying tumour-specific traits in the intestine.
Specimen part
View SamplesThe effects of LXR stimulation by GW3965 treatment on global mRNA and miRNA expression in primary human in vitro differentiated adipocytes was investigated using microarray profiling.
LXR is a negative regulator of glucose uptake in human adipocytes.
Sex, Age, Specimen part, Subject
View SamplesComparison of global transcription profiles in mouse E12.5 embryonic lung from Shh-Cre;Sin3a flox/+ control with Shh-Cre;Sin3a flox/flox revealed a large change genes due to loss of Sin3a in early lung development. Overall design: Examination of 2 different transcriptomes in 2 genotypes with three replicates.
Sin3a regulates epithelial progenitor cell fate during lung development.
Specimen part, Subject
View SamplesPlants possess a cold acclimation system to acquire freezing tolerance through pre-exposure to non-freezing low temperatures. The transcriptional cascade of C-repeat binding factors (CBFs)/dehydration response element-binding factors (DREBs) is considered a major transcriptional regulatory pathway during cold acclimation. However, little is known regarding the functional significance of mRNA stability regulation in the response of gene expression to cold stress. The actual level of individual mRNAs is determined by a balance between mRNA synthesis and degradation. Therefore, it is important to assess the regulatory steps to increase our understanding of gene regulation. Here, we analyzed temporal changes in mRNA amounts and half-lives in response to cold stress in Arabidopsis cell cultures based on genome-wide analysis. In this mRNA decay array method, mRNA half-life measurements and microarray analyses were combined. In addition, temporal changes in the integrated value of transcription rates were estimated from the above two parameters using a mathematical approach. Our results showed that several cold-responsive genes, including Cold-regulated 15a, were relatively destabilized, whereas the mRNA amounts were increased during cold treatment by accelerating the transcription rate to overcome the destabilization. Considering the kinetics of mRNA synthesis and degradation, this apparently contradictory result supports that mRNA destabilization is advantageous for the swift increase in CBF-responsive genes in response to cold stress.
Co-ordinated Regulations of mRNA Synthesis and Decay during Cold Acclimation in Arabidopsis Cells.
Cell line
View Samples