The histone acetyltransferase (HAT) Mof is essential for mouse embryonic stem cells (mESC) pluripotency and early development. Mof is the enzymatic subunit of two different HAT complexes, MSL (Male-Specific Lethal) and NSL (Non-specific lethal). The individual contribution of MSL and NSL complexes to transcription regulation in mESCs is not well understood. Our genome-wide analysis of MSL and NSL localization show that i) MSL and NSL bind to specific and common sets of expressed genes, ii) NSL binds at promoters, iii) while MSL binds in gene bodies. Knockdown of Msl1 leads to a global loss of histone H4K16ac indicating that MSL is the main HAT acetylating H4K16 in mESCs. MSL was enriched at many mESC-specific genes, but also at bivalent domains. Thus, NSL and MSL HAT complexes differentially regulate specific sets of expressed genes in mESCs. Furthermore, MSL is essential for the regulation of key mESC-specific and bivalent developmental genes.
Mof-associated complexes have overlapping and unique roles in regulating pluripotency in embryonic stem cells and during differentiation.
No sample metadata fields
View SamplesWe report here that REV-ERBa influences nuclear localization of the glucocorticoid receptor and vice versa. As a consequence these two nuclear receptors influence each others transcriptome. REV-ERBa (Nr1d1) is a nuclear receptor that is part of the circadian clock mechanism and regulates metabolism and inflammatory processes. The glucocorticoid receptor (GR, Nr3c1) influences similar processes, but is not part of the circadian clock mechanism although glucocorticoid signaling affects resetting of the circadian clock in peripheral tissues. Because of their similar impact on physiological processes we studied the interplay between these two nuclear receptors. We found that REV-ERBa competes with GR for binding to HSP90, a chaperone responsible for the activation of substrate proteins to ensure survival of a cell. This competition affected stability and nuclear localization of GR, thereby affecting GR target gene expression such as I?B and alcohol dehydrogenase 1 (Adh1). Our findings highlight an important interplay between two nuclear receptors that influence each others transcritpional potential indicating that the transcriptional landscape is strongly dependent on dynamic processes at the protein level. Overall design: In this dataset, we isolated livers at Zeitgebertime (ZT) 8 and ZT20 of wild type and Rev-erb alpha knock-out animals. Liver samples were immediately flash frozen in liquid N2 and stored at -80?°C. RNA was extracted using NucleoSpin RNA (Machery-Nagel, Düren, Germany) according to the instructions of the manufacturer. Quality of the RNA samples was analysed with a spectrophotometer, agarose gel electrophoresis and reverse transcription-PCR. Library construction starting from the poly(A)-tail and multiplexing was performed according to the instructions of the manufacturer (Illumina). The samples were organized as follows: Three replicas (1-WT, 2-WT, 3-WT) correspond to genotype WT at ZT8. Three replicas (4-Rev, 5-Rev, 6-Rev) correspond to genotype Rev-/- at ZT8. Three replicas (7-WT, 8-WT, 9-WT) correspond to genotype WT at ZT20. Three replicas (10-Rev, 11-Rev, 12-Rev) correspond to genotypeRev-/- at ZT20. For the experiment, complementary DNA (cDNA) libraries were barcoded using Illumina primers and loaded onto one lane of an IlluminaHS2000 machine. cDNA libraries were diluted and loaded onto each lane. The samples were sequenced for a maximum sequencing length of 75?bp. Sequences were aligned to the mouse genome (UCSC version mm10 database). Numbers of the sequences obtained for each library can be found in Supplementary Table 3. Sequences (fastq format) were mapped with Tophat (Trapnell, C. 2009), uniquely mapped sequences from the output files (bam format) were then used for further analysis, percentage of the mapping obtained for each sample can be found in Supplementary Table 3. For all files the reads were counted with HTSeq-count using the following criteria: samtools view sample.bam | htseq-count -m union -a 10 -s no -i gene_name Mus_Musculus.gtf > sample_counts.txt Tests for differential expression between the samples were performed in R software (R Core Team, 2014 http://www.R-project.org/) using the DESeq2 package (Version 1.6.3) (Love, M. 2014). A threshold on the corrected P value was used to call for differentially expressed genes (P.adjust<0.05).
REV-ERBα influences the stability and nuclear localization of the glucocorticoid receptor.
Age, Specimen part, Subject, Time
View SamplesHere we report the gene expression profile of in vitro cultured human endometrial stromal cells treated with siRNA targeting FOXO1 piror to eutherian differentiation media exposure. The eutherian differentiation media contains cyclic AMP (cAMP) analogue 8-Br-cAMP and the progesterone (P4) analogue medroxyprogesterone acetate (MPA). Overall design: RNA-seq on decidualizing human endometrial stromal cells treated with siRNA targeting FOXO1.
The mammalian decidual cell evolved from a cellular stress response.
Specimen part, Treatment, Subject
View SamplesMotivation: Sample source, procurement process, and other technical variations introduce batch effects into genomics data. Algorithms to remove these artifacts enhance differences between known biological covariates, but also carry potential concern of removing intra-group biological heterogeneity and thus any personalized genomic signatures. As a result, accurate identification of novel subtypes from batch corrected genomics data is challenging using standard algorithms designed to remove batch effects for class comparison analyses. Nor can batch effects be corrected reliably in future applications of genomics-based clinical tests, in which the biological groups are by definition unknown a priori.
Preserving biological heterogeneity with a permuted surrogate variable analysis for genomics batch correction.
Sex, Specimen part, Disease, Disease stage, Race
View SamplesOrganismal function is, to a great extent, determined by interactions among their fundamental building blocks, the cells. In?this work, we studied the cell-cell interactome of fetal placental trophoblast cells and maternal endometrial stromal cells, using single-cell transcriptomics. The placental interface mediates the interaction between two semiallogenic individuals, the mother and the fetus, and is thus the epitome of cell interactions. To study these, we inferred the cell-cell interactome? by assessing the gene expression of receptor-ligand pairs across cell types. Moreover, we find that the expression of G-protein coupled receptors is highly cell-type?specific, implying that ligand-receptor profiles could be a reliable tool for cell type identification. Furthermore, we find that uterine decidual cells represent a cell-cell interaction hub with a relatively large?number of potential incoming and outgoing signals. Decidual cells differentiate from their precursors, the endometrial stromal fibroblasts, during uterine preparation for pregnancy. We show that decidualization (even in vitro) enhances the ability ?to communicate with the fetus, as most of the receptors and ligands up-regulated during decidualization have their counterpart expressed in trophoblast cells. Among the signals transmitted, growth factors and immune signals dominate, suggesting a delicate balance of enhancing and suppressive signals. Finally, this study provides a rich resource of gene ?expression profiles of term intravillous and extravillous trophoblasts, including the transcriptome of the multinucleated syncytiotrophoblast. Overall design: We sequenced mRNA from primary human endometrial stromal fibroblasts and in vitro human decidualized stromal fibroblasts.
Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface.
Specimen part, Subject
View SamplesWe provide the tissue-level human placental transcriptomes from two term uncomplicated pregnancies. Tissue was collected at term C-section (no labor), from villous part of the placenta. Overall design: mRNA-seq of placenta from two term healthy pregnancies.
Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface.
Specimen part, Subject
View SamplesScreening small molecules and drugs for activity to modulate alternative splicing, we found that amiloride, distinct from four other intracellular pH-affecting analogues, could normalize the splicing of BCL-X, HIPK3 and RON/MISTR1 transcripts in human hepatocellular carcinoma Huh-7 cells. To elucidate the underlying mechanisms, our proteomic analyses of amiloride-treated cells detected hypo-phosphorylation of splicing factor SF2/ASF and also decreased levels of SRp20 and two un-identified SR proteins. We further observed decreased phosphorylation of AKT, ERK1/2 and PP1, while increased phosphorylation of p38 and JNK, suggesting that amiloride treatment down-regulated kinases and up-regulated phosphatases in the signal pathways known to affect the splicing factor protein phosphorylation. The amiloride effects of splicing factor protein hypo-phosphorylation andnormalizedoncogenic RNA splicing were both abrogated by pre-treatment with a PP1 inhibitor. We then performed global exon array analysis of Huh-7 cells treated with amiloride for 24 hours. Using gene array chips (Affymetrix GeneChip Human Exon 1.0 ST Array of >518000 exons of 42974 genes) for exon array analysis (set parameters of correlation coefficient 0.7, splicing index -1.585 , and log2 ratio -1.585), we found that amiloride influenced the splicing patterns of 551 genes involving at least 584 exons, which included 495 known protein-coding genes involving 526 exons, many of which play key roles in functional networks of ion transport, extracellular matrix, cytoskeletons and genome maintenance. Cellular functional analyses revealed subsequent invasion and migration defects, cell cycle disruption, cytokinesis impairment, and lethal DNA degradation in amiloride-treated Huh-7 cells. This study thus provides mechanistic underpinnings for exploiting small molecule modulation of abnormal RNA splicing for cancer therapeutics.
Small molecule amiloride modulates oncogenic RNA alternative splicing to devitalize human cancer cells.
Cell line
View SamplesAlternative splicing is a mechanism for increasing the protein variety of a limited number of genes. Studies have shown that aberrant regulations of the alternative splicing of apoptotic gene transcripts may contribute to the development of cancer. In this study, we isolated 4ß-Hydroxywithanolide E (4bHWE) from the traditional herb Physalis peruviana, and analyzed its biological effects in cancer cells. The results demonstrated that 4bHWE modulates the alternative splicing of apoptotic genes (e.g., HIPK3, SMAC/DIABLO, and SURVIVIN), changes the expression level of splicing factors (e.g., hnRNP C1/C2, ASF/SF2, SRp20, and SRp55), and induces histone tail posttranslational modifications (e.g., H3K27me1, H3K27me2, H3K36me3, and H3K79me1). Pretreatment with okadaic acid to inhibit protein phosphatase-1 could partly relieve the effects of 4bHWE on the alternative splicing of HIPK3 and SMAC/DIABLO transcripts, as well as on the dephosphorylation of ASF/SF2. Genome-wide detection of alternative splicing further indicated that several other apoptosis-related genes are also regulated by 4bHWE, including APAF1, CARP-1, and RIPK1. Moreover, we extended our study to apoptosis-associated molecules, detecting an increasing level of CASPASE-3 activity and cleavage of poly ADP-ribose polymerase in 4bHWE-induced apoptosis. Furthermore, in vivo experiments showed that the treatment of tumor-bearing mice with 4bHWE resulted in a marked decrease of tumor size and weight. Taken together, this study is the first to show that 4bHWE affects alternative splicing through the modulations of splicing factors, providing a novel view of the antitumor mechanism of 4bHWE. Overall design: Examination of the global genes with altered alternative splicing in 4bHWE-treated Huh-7 cells.
4β-Hydroxywithanolide E Modulates Alternative Splicing of Apoptotic Genes in Human Hepatocellular Carcinoma Huh-7 Cells.
Specimen part, Treatment, Subject
View SamplesTET-family dioxygenases oxidize 5-methylcytosine (5mC) in DNA, and exert tumor suppressor activity in many types of cancers. Even in the absence of TET coding region mutations, TET loss-of-function is strongly associated with cancer. We show that acute elimination of TET function induces the rapid development of an aggressive, fully-penetrant and cell-autonomous myeloid leukemia in mice, pointing to a causative role for TET-loss-of-function in this myeloid malignancy. Phenotypic and transcriptional profiling showed aberrant differentiation of hematopoietic stem/ progenitor cells, impaired erythroid and lymphoid differentiation and strong skewing to the myeloid lineage, with only a mild relation to changes in DNA modification. We also observed progressive accumulation of DNA damage and strong impairment of DNA break repair, suggesting a key role for TET proteins in maintaining genomic integrity. Overall design: Jungeun, An
Acute loss of TET function results in aggressive myeloid cancer in mice.
Specimen part, Subject
View SamplesThe basic helix-loop-helix (bHLH) transcription factor hairy and enhancer of split (Hes3) is a member of the Hes/Hey gene family that regulates developmental processes in progenitor cells from various tissues. We demonstrated the Hes3 expression in mouse pancreatic tissue, suggesting it may have a role in modulating beta-cell function. We employed a transfection approach to address specific functions of Hes3. Hes3 RNA interference opposed the growth of the mouse insulinoma cell line Min6. Western blotting and PCR approaches specifically showed that Hes3 RNA interference opposes the expression of Pdx1 and insulin. Likewise, Hes3 knock down reduced evoked insulin release from Min6 cells.
Hes3 is expressed in the adult pancreatic islet and regulates gene expression, cell growth, and insulin release.
Specimen part
View Samples