Global gene expression analysis of grapevine cv. Pinot Noir berries during development and ripening. Time-course comparison of samples collected at three developmental stages (stages 33, 34 and 36 according to the modified E-L system, ref: Coombe BG, Aust J Grape Wine Res 1995, 1: 104-110) during three seasons (2003, 2005 and 2006).
Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison.
Age, Specimen part, Time
View SamplesGlobal gene expression analysis of grapevine cv. Pinot Noir berries during development and ripening. Time-course comparison of samples collected at three developmental stages (stages 33, 34 and 36 according to the modified E-L system, ref: Coombe BG, Aust J Grape Wine Res 1995, 1: 104-110) during three seasons (2003, 2005 and 2006). Data for each of the three seasons were normalized independently within each season, using gcRMA.
Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide analysis reveals a role for BRCA1 and PALB2 in transcriptional co-activation.
Specimen part, Disease, Cell line
View SamplesBreast and ovarian cancer susceptibility genes, BRCA1 and PALB2 have enigmatic roles in cellular growth and mammalian development. While these genes are essential for growth during early developmental programs, inactivation later in adulthood leads to increased growth and formation of tumors, leading to their designation as tumor suppressors. We performed genome-wide analysis assessing their chromatin residence and gene expression responsiveness using high throughput sequencing in breast epithelial cells. These experiments revealed a critical role for BRCA1 and PALB2 in transcriptional responsiveness to NF-kB, a crucial mediator of growth and inflammatory response during development and cancer. Importantly, we also uncovered a vital role for these proteins in response to retinoic acid (RA), a growth inhibitory signal in breast cancer cells, which may constitute the basis for their tumor suppressor activity.
Genome-wide analysis reveals a role for BRCA1 and PALB2 in transcriptional co-activation.
Specimen part, Cell line
View SamplesBreast and ovarian cancer susceptibility genes, BRCA1 and PALB2 have enigmatic roles in cellular growth and mammalian development. While these genes are essential for growth during early developmental programs, inactivation later in adulthood leads to increased growth and formation of tumors, leading to their designation as tumor suppressors. We performed genome-wide analysis assessing their chromatin residence and gene expression responsiveness using high throughput sequencing in breast epithelial cells. These experiments revealed a critical role for BRCA1 and PALB2 in transcriptional responsiveness to NF-kB, a crucial mediator of growth and inflammatory response during development and cancer. Importantly, we also uncovered a vital role for these proteins in response to retinoic acid (RA), a growth inhibitory signal in breast cancer cells, which may constitute the basis for their tumor suppressor activity.
Genome-wide analysis reveals a role for BRCA1 and PALB2 in transcriptional co-activation.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Requirement for SNAPC1 in transcriptional responsiveness to diverse extracellular signals.
Cell line, Treatment
View SamplesThe small nuclear RNA (snRNA)-activating protein complex (SNAPc) is a basal transcription factor that mediates the transcriptional activation of snRNAs. Here, we describe the genome-wide occupancy of the SNAPC1_and SNAPC4 subunits of SNAPc. While the SNAPC4 occupancy was in accord with the role for SNAPc in snRNA transcription, SNAPC1_displayed a broader genomic profile mirroring that of RNA polymerase II at highly active protein-coding genes. Our functional analysis revealed a role for SNAPC1_in regulation of both basal and activator-induced transcription of protein-coding genes. These studies expand the role for SNAPC1_beyond its regulation of snRNA transcription.
Requirement for SNAPC1 in transcriptional responsiveness to diverse extracellular signals.
Cell line, Treatment
View SamplesPost-translational modifications, such as poly(ADP-ribosyl)ation (PARylation), regulate chromatin-modifying enzymes, ultimately affecting gene expression. This study explores the role of poly(ADP-ribose) polymerase (PARP) on global gene expression in a lymphoblastoid B cell line. We found that inhibition of PARP catalytic activity with olaparib resulted in global gene deregulation, affecting approximately 11% of genes expressed. Gene ontology analysis revealed that PARP could exert these effects through transcription factors and chromatin-remodeling enzymes, including the Polycomb Repressive Complex 2 (PRC2) member EZH2. EZH2 mediates the trimethylation of histone H3 at lysine 27 (H3K27me3), a modification associated with chromatin compaction and gene silencing. Both pharmacological inhibition of PARP and knockdown of PARP1 induced the expression of EZH2 that resulted in increased global H3K27me3. Chromatin immunoprecipitation confirmed that PARP1 inhibition led to H3K27me3 deposition at EZH2-target genes, which resulted in gene silencing. Moreover, increased EZH2 expression is attributed to occupancy loss of the transcription repressor E2F4 at the EZH2 promoter following PARP inhibition. Together, these data show that PARP plays an important role in global gene regulation and identifies for the first time a direct role of PARP1 in regulating the expression and function of EZH2. Overall design: Examination of the effect of PARP inhibition on global gene expression in LCLs cell lines. mRNA profiles of LCLs cells lines treated at different time points with olaparib were generated by deep sequencing, in triplicate, using Illumina GAIIx.
Global Transcriptome Analysis Reveals That Poly(ADP-Ribose) Polymerase 1 Regulates Gene Expression through EZH2.
No sample metadata fields
View SamplesPURPOSE To identify retinal genes and their relevant expression pathways affected by intravitreal injections of dexamethasone and triamcinolone acetonide in mice at clinically relevant time points for patient care.
In vivo gene expression profiling of retina postintravitreal injections of dexamethasone and triamcinolone at clinically relevant time points for patient care.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrator regulates transcriptional initiation and pause release following activation.
Disease, Cell line, Treatment
View Samples