Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive hematological. We used transcriptomic analysis to investigate LXR pathway, and cholesterol metabolism in leukemic cells. Malignancy with a poor prognosis that derives from plasmacytoid dendritic cells (PDC). No consensus for optimal treatment modalities is available today and the full characterization of this leukemia is still emerging. We identified here a BPDCN-specific transcriptomic profile when compared to those of acute myeloid leukemia (AML) and T-acute lymphoblastic leukemia (T-ALL), as well as the transcriptomic signature of primary PDC. This BPDCN gene signature identified a dysregulation of genes involved in cholesterol homeostasis, some of them being liver X receptor (LXR) target genes. LXR agonist treatment of primary BPDCN cells and BPDCN cell lines restored LXR target gene expression and increased cholesterol efflux via the upregulation of ATP Binding Cassette (ABC) transporters, ABCA1 and ABCG1. LXR agonist treatment was responsible for limiting BPDCN cell proliferation and inducing intrinsic apoptotic cell death. LXR activation in BPDCN cells was shown to interfere with three signaling pathways associated with leukemic cell survival, namely: NF-B activation, as well as Akt and STAT5 phosphorylation in response to the BPDCN growth/survival factor IL-3. These effects were increased by the stimulation of cholesterol efflux through a lipid acceptor, the apolipoprotein A1. In vivo experiments using a mouse model of BPDCN cell xenograft revealed a decrease of leukemic cell infiltration and BPDCN-induced cytopenia associated with an increased survival after LXR agonist treatment. This demonstrates that cholesterol homeostasis is modified in BPDCN and can be normalized by treatment with LXR agonists which can be proposed as a new therapeutic approach.
LXR agonist treatment of blastic plasmacytoid dendritic cell neoplasm restores cholesterol efflux and triggers apoptosis.
Specimen part, Disease, Disease stage
View SamplesWe analyzed mRNAs in transiliacal bone biopsies from 7 patients with primary hyperparathyroidism using Affymetrix HG-U133A Gene Chips Similar analyses of the global transcriptional activity were repeated in a second bone biopsy from the same patient taken one year after surgery and reversal of disease parameters.
Abnormal muscle and hematopoietic gene expression may be important for clinical morbidity in primary hyperparathyroidism.
Sex, Age, Specimen part, Disease, Subject
View SamplesStudy on differential gene expression and splicing between wildtype and clock mutants. This study is part of a comparative analysis of the role of Protein Methyltransferase 5 in the regulation of transcriptional and post-transcriptional processes simultaneously in Arabidopsis and Drosophila.
A methyl transferase links the circadian clock to the regulation of alternative splicing.
Specimen part
View SamplesIn this report, we describe a successful protocol for isolating and expression-profiling live fluorescent- protein-labelled neurons from zebrafish embryos. As a proof-of-principle for this method, we FAC-sorted and RNA-profiled GFP-labelled spinal CiA interneurons and compared the expression profile of these cells to those of post-mitotic spinal neurons in general and to all trunk cells. We show that RNA of sufficient quality and quantity to uncover both expected and novel transcription profiles via Affymetrix microarray analysis can be extracted from 5,700 to 20,000 FAC-sorted cells. As part of this study, we also further confirm the genetic homology of mammalian and zebrafish V1 interneurons, by demonstrating that zebrafish V1 cells (CiAs) express genes that encode for the transcription factors Lhx1a and Lhx5. This protocol for dissociating, sorting and RNA-profiling neurons from organogenesis-stage zebrafish embryos should also be applicable to other developing organs and tissues and potentially other model organisms.
RNA profiling of FAC-sorted neurons from the developing zebrafish spinal cord.
Age, Specimen part
View SamplesWe have used the citrus GeneChip array (GPL5731) to survey the transcription profiles of sweet orange in response to the bacterial pathogens Xanthomonas axonopodis pv. citri (Xac) and Xanthomonas axonopodis pv. aurantifolii (Xaa). Xac is the causal agent of the citrus canker disease on a wide range of citrus species, including sweet oranges (Citrus sinensis). On the other hand, Xaa is pathogenic to Mexican lime (Citrus aurantifolia) only, and in sweet orange it triggers a defense response. In order to identify the genes induced during the defense response (Xaa-responsive genes) or citrus canker development (Xac-responsive genes), we conducted microarrays hybridization experiments at 6 and 48 hours after bacterial infiltration (habi). The analysis revealed that genes commonly modulated by Xac and Xaa are associated with basal defenses normally triggered by pathogen-associated molecular patterns, including those involved in reactive oxygen species production and lignification. Significantly, Xac-infected leaves showed considerable changes in the transcriptional profiles of defense-, cell wall-, vesicle trafficking- and cell growth-related genes between 6 and 48 habi. This is consistent with the notion that Xac suppresses host defenses near the beginning of the infection and simultaneously changes the physiological status of the host to promote cell enlargement and division. Finally, Xaa triggered a MAP kinase signaling pathway involving WRKY and ethylene-responsive transcriptional factors known to activate downstream defense genes.
Transcriptional analysis of the sweet orange interaction with the citrus canker pathogens Xanthomonas axonopodis pv. citri and Xanthomonas axonopodis pv. aurantifolii.
No sample metadata fields
View SamplesMyofibroblast is a specific type of mesenchymal cell characterized by synthesis of extracellular matrix and contractile activity. While it serves a beneficial function during tissue wound healing under physiological conditions, it can cause devastating damage to organs afflicted with fibrosis. Myofibroblasts are also present in tumor stroma and contribute actively to tumor growth and spreading. Chicken embryo dermal myofibroblasts (CEDM) represent a novel ex vivo model suitable for the analysis of myofibroblastic phenotype as they show strongly pronounced, uniform and self-sustained myofibroblastic phenotype that is stable in time. As myofibroblastic differentiation is controlled chiefly by TGF-beta signaling, the understanding of the differentiation program entails the determination of TGF-beta-regulated genes. To achieve such a goal, we performed oligonucleotide microarray analysis of CEDM cells treated with a selective TGFBR1 kinase inhibitor. Genes reported previously to be under the control of TGF-beta signaling in mammalian cells appeared among the affected genes also in CEDM cells and many so far unknown TGF-beta targets were revealed.
Molecular analysis of the TGF-beta controlled gene expression program in chicken embryo dermal myofibroblasts.
Specimen part, Treatment
View SamplesEight healthy human subjects were enrolled in a 6-day simulated shift work protocol. Blood samples were collected during the two 24-hour measurement periods. Blood samples were collected every 4 hours during both measurement periods. Subjects entered the lab on Day 1. At the start of Day 2, the first 24-hour measurement period was started. Subjects slept according to their habitual sleep/wake schedule, followed by a 16-hour constant posture procedure. On days 3-6, the sleep period was delayed by 10 hours. Following the third night on this schedule, subjects underwent another 24-hour measurement period. During both measurement periods, 7 blood samples were collected and PBMCs were isolated. mRNA was extracted, labelled, and hybridized to microarrays.
Simulated night shift work induces circadian misalignment of the human peripheral blood mononuclear cell transcriptome.
Subject
View SamplesPlants regulate their time to flowering by gathering information from the environment. Photoperiod and temperature are among the most important environmental variables. Suboptimal, but not near-freezing, temperatures regulate flowering through the thermosensory pathway, which overlaps with the autonomous pathway. Here we show that ambient temperature regulates flowering by two genetically distinguishable pathways, one that requires TFL1 and another that requires ELF3. The delay in flowering time observed at lower temperatures was partially suppressed in single elf3 and tfl1 mutants, whereas double elf3 tfl1 mutants were insensitive to temperature. tfl1 mutations abolished the temperature response in cryptochrome mutants that are deficient in photoperiod perception, but not in phyB mutants that have a constitutive photoperiodic response. Contrary to tfl1, elf3 mutations were able to suppress the temperature response in phyB mutants, but not in cryptochrome mutants. The gene expression profile revealed that the tfl1 and elf3 effects are due to the activation of different sets of genes and identified CCA1 and SOC1/AGL20 as being important cross talk points. Finally, genome-wide gene expression analysis strongly suggests a general and complementary role for ELF3 and TFL1 in temperature signalling.
A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature.
No sample metadata fields
View SamplesEstrogen receptor- (ESR1) is an important transcriptional regulator in the mammalian oviduct, however ESR1-dependent regulation of this organ is not well defined, especially at the genomic level. The objective of this study was therefore to investigate estradiol- and ESR1-dependent regulation of the transcriptome of the oviduct using transgenic mice, both with (ESR1KO) and without (wild-type, WT) a global deletion of this transcription factor using the Affymetrix Genechip Mouse Genome 430-2.0 arrays.
Estrogen Receptor Alpha (ESR1)-Dependent Regulation of the Mouse Oviductal Transcriptome.
Sex, Specimen part, Treatment
View SamplesIxr1 is a transcriptional factor from Saccharomyces cerevisae with high affinity to cisplatin-DNA adducts through their two HMG-box DNA binding domains. Its transcriptional regulation is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Ixr1 function.
Ixr1 Regulates Ribosomal Gene Transcription and Yeast Response to Cisplatin.
No sample metadata fields
View Samples