The JAK2 mutation V617F is detectable in a majority of patients with Ph-negative myeloproliferative neoplasms (MPN). Enforced expression of JAK2 V617F in mice induces myeloproliferation and bone marrow (BM) fibrosis suggesting a causal role for the JAK2 mutant in the pathogenesis of MPN. However, little is known about mechanisms and effector molecules contributing to JAK2 V617F-induced myeloproliferation and fibrosis. Here we show that JAK2 V617F promotes expression of oncostatin M (OSM) in neoplastic myeloid cells. Correspondingly, OSM was found to be overexpressed in the BM and elevated in the serum of patients with JAK2 V617F+ MPN. In addition, OSM secreted by JAK2 V617F+ cells stimulated growth of fibroblasts and microvascular endothelial cells and induced the production of angiogenic and profibrogenic cytokines (HGF, VEGF, and SDF-1) in BM fibroblasts. All effects of MPN cell-derived OSM were blocked by a neutralizing anti-OSM antibody, whereas the production of OSM in MPN cells was effectively suppressed by a pharmacologic JAK2 inhibitor or RNAi-mediated knockdown of JAK2. In summary, JAK2 V617F-mediated upregulation of OSM may contribute to fibrosis, neoangiogenesis, and the cytokine storm observed in JAK2 V617F+ MPN, suggesting that OSM could serve as a novel therapeutic target molecule in these neoplasms.
Identification of oncostatin M as a JAK2 V617F-dependent amplifier of cytokine production and bone marrow remodeling in myeloproliferative neoplasms.
Cell line, Treatment
View SamplesEstrogen receptor- (ESR1) is an important transcriptional regulator in the mammalian oviduct, however ESR1-dependent regulation of this organ is not well defined, especially at the genomic level. The objective of this study was therefore to investigate estradiol- and ESR1-dependent regulation of the transcriptome of the oviduct using transgenic mice, both with (ESR1KO) and without (wild-type, WT) a global deletion of this transcription factor using the Affymetrix Genechip Mouse Genome 430-2.0 arrays.
Estrogen Receptor Alpha (ESR1)-Dependent Regulation of the Mouse Oviductal Transcriptome.
Sex, Specimen part, Treatment
View SamplesBMP3 stimulates mesenchymal stem cell proliferation, but the down-stream molecular targets of BMP3 are unknown
Wisp1 mediates Bmp3-stimulated mesenchymal stem cell proliferation.
Specimen part, Cell line
View SamplesReproductive success depends on a functional oviduct for gamete storage, maturation, fertilization, and early embryonic development. The ovarian-derived sex steroids estrogen and progesterone have been found to influence cell proliferation, differentiation and functionality of the oviduct. The objective of this study was to investigate steroidal regulation of oviductal epithelial cell function by using the Bovine Gene 1.0 ST array (Affymetrix Inc., CA) for transcriptional profiling. Our overall goals were to increase our understanding of known epithelial cell processes critical for fertility, and to identify novel genes and biochemical processes for future analysis. Transcripts were annotated using NetAffx annotation database for the Bovine gene 1.0 ST array and last updated in June 2014.
A transcriptomal analysis of bovine oviductal epithelial cells collected during the follicular phase versus the luteal phase of the estrous cycle.
Specimen part
View SamplesIn many parts of the US, selenium (Se)-deficient soils dictate the necessity of supplementing this trace mineral directly to the diet of cattle, with the form of Se supplied known to affect tissue-level gene expression profiles and presumably function. Because a deficiency of Se will reduce fertility, including reduced biosynthesis of testosterone by the testis and an increased frequency of abnormalities in mature spermatozoa, we hypothesized that the form of Se supplemented to cows during gestation would affect the transcriptome of the neonatal bull calf testis. Microarray analysis using the Bovine gene 1.0 ST array (GeneChip; Affymetrix, Inc., Santa Clara, CA) was conducted to determine whether gestational form of supplemental Se affected gene expression profiles in the testis. GeneChip transcript annotations were last updated in January 2013 using the annotation update release 33 from the NetAffx annotation database.
Gestational form of Selenium in Free-Choice Mineral Mixes Affects Transcriptome Profiles of the Neonatal Calf Testis, Including those of Steroidogenic and Spermatogenic Pathways.
Specimen part
View SamplesIn the field, adult male rodents are more frequently infected with hantaviruses than females. Early data suggests that sex steroid hormones modulate sex differences in host immune response. This project focuses on elucidating sex differences in gene expression in the lungs of infected males 15 and 40 days post infection with Seoul virus (naturally occurring hantavirus in Norway rats) relative to infected females 15 and 40 days post infection on 12 RG_U34 GeneChips.
Differential expression of immunoregulatory genes in male and female Norway rats following infection with Seoul virus.
No sample metadata fields
View SamplesThe goal of this study was to examine whether immune responses to Plasmodium chabaudi infection differ between the sexes and are altered by the presence of gonadal steroids. Gonadally-intact males were more likely than intact females to die following P. chabaudi infection, exhibit slower recovery from infection-associated weight loss, hypothermia, and anemia, have reduced IFN-associated gene expression and IFN production during peak parasitemia, and produce less antibody during the recovery phase of infection. Gonadectomy of male and female mice altered these sex-associated differences, suggesting that sex steroid hormone, in particular androgens and estrogens, may modulate immune responses to infection.
Involvement of gonadal steroids and gamma interferon in sex differences in response to blood-stage malaria infection.
No sample metadata fields
View SamplesIn order to understand if early epigenetic mechanisms instruct the long-term behaviour of neural stem cells (NSCs) and their progeny, we examined the protein Uhrf1 as it is highly expressed in NSCs of the developing brain and rapidly downregulated upon differentiation. Conditional deletion of Uhrf1 in the developing cerebral cortex resulted in rather normal proliferation and neurogenesis but severe postnatal neurodegeneration. During development, deletion of Uhrf1 resulted in global DNA hypomethylation with a strong activation of the IAP family of endogenous retroviral elements, accompanied by an increase in hydroxy methyl cytosine. Downregulation of Tet enzymes rescued the IAP activation in Uhrf1 cKO cells, suggesting an antagonistic interplay between Uhrf1 and Tet on IAP regulation. As IAP upregulation persists into postnatal stages in the conditional Uhrf1 KO mice, our data show the lack of means to repress IAPs in differentiating neurons that normally never express Uhrf1. The high load of viral proteins and other transcriptional dysregulation ultimately lead to extensive postnatal neurodegeneration. Taken together, these data show that early developmental NSC factors can have long-term effects in neuronal differentiation and survival. Moreover, it highlights how specific the consequences of widespread changes in DNA methylation are for certain classes of retroviral elements. Overall design: Transcriptome analysis in control vs. Uhrf1-deficient brain
Loss of Uhrf1 in neural stem cells leads to activation of retroviral elements and delayed neurodegeneration.
Specimen part, Cell line, Subject
View SamplesIn order to understand if early epigenetic mechanisms instruct the long-term behaviour of neural stem cells (NSCs) and their progeny, we examined the protein Uhrf1 as it is highly expressed in NSCs of the developing brain and rapidly downregulated upon differentiation. Conditional deletion of Uhrf1 in the developing cerebral cortex resulted in rather normal proliferation and neurogenesis but severe postnatal neurodegeneration. During development, deletion of Uhrf1 resulted in global DNA hypomethylation with a strong activation of the IAP family of endogenous retroviral elements, accompanied by an increase in hydroxy methyl cytosine. Downregulation of Tet enzymes rescued the IAP activation in Uhrf1 cKO cells, suggesting an antagonistic interplay between Uhrf1 and Tet on IAP regulation. As IAP upregulation persists into postnatal stages in the conditional Uhrf1 KO mice, our data show the lack of means to repress IAPs in differentiating neurons that normally never express Uhrf1. The high load of viral proteins and other transcriptional dysregulation ultimately lead to extensive postnatal neurodegeneration. Taken together, these data show that early developmental NSC factors can have long-term effects in neuronal differentiation and survival. Moreover, it highlights how specific the consequences of widespread changes in DNA methylation are for certain classes of retroviral elements. Overall design: Transcriptome analysis in control vs. Uhrf1-deficient brain
Loss of Uhrf1 in neural stem cells leads to activation of retroviral elements and delayed neurodegeneration.
Specimen part, Cell line, Subject
View SamplesUsing BCR-ABL-induced chronic myeloid leukemia (CML) as a disease model for leukemia stem cells (LSCs), we showed that BCR-ABL down-regulates the B lymphoid kinase (Blk) gene in leukemia stem cells in CML mice and that Blk functions as a tumor suppressor in LSCs and suppresses LSC function. Inhibition of this Blk pathway accelerates CML development, whereas increased activity of the Blk pathway delays CML development. To identify the pathways in which Blk regulates function of LSCs, we performed a comparative DNA microarray analysis using total RNA isolated from non-BCR-ABL-expressing Lin-Sca-1+c-Kit+, BCR-ABL- and BCR-ABL-Blk expressing LSCs. This analysis revealed a large group of candidate genes that exhibited changes in the levels of transcription in the Blk expressing LSCs, and uncovered the molecular mechanisms by which Blk suppresses LSCs and CML development.
The Blk pathway functions as a tumor suppressor in chronic myeloid leukemia stem cells.
Age, Specimen part
View Samples