This SuperSeries is composed of the SubSeries listed below.
A special population of regulatory T cells potentiates muscle repair.
Sex, Age, Specimen part, Treatment, Time
View SamplesA phenotypically and functionally distinct population of CD4+ Foxp3+ T cells (Tregs) rapidly accumulates in acutely injured skeletal muscle of mice, just as invading myeloid-lineage cells switch from a pro-inflammatory to a pro-regenerative state. Analysis of gene expression of Tregs and CD4+Foxp3- T cells (Tconvs) from injured muscle and spleen revealed that the transcriptome of muscle Treg cells is distinct from that of splenic Tregs. A set of genes is uniquely expressed by muscle Tregs, while another set is over-expressed by the two muscle populations vis--vis their two spleen counterparts.
A special population of regulatory T cells potentiates muscle repair.
Sex, Age, Specimen part, Treatment, Time
View SamplesA comparative analysis of gene expression of injured skeletal muscle from wild-type (Foxp3-DTR-) and Treg-depleted (Foxp3-DTR+) mice showed that Treg cells are critical for effective repair and regeneration of acute injury of skeletal muscle.
A special population of regulatory T cells potentiates muscle repair.
Sex, Age, Specimen part, Treatment, Time
View SamplesGlobal gene expression analysis of injured skeletal muscle showed that amphiregulin (Areg), a growth factor over-expressed by muscle Treg cells, enhances muscle regeneration both in the presence and in the absence of Tregs.
A special population of regulatory T cells potentiates muscle repair.
Age, Specimen part, Treatment, Time
View SamplesCD4+Foxp3+ regulatory T cells (Tregs) accumulate in skeletal muscle from dystrophin-deficient mdx mice. Analysis of global gene expression in muscles from mdx mice treated with anti-CD25 compared with muscles from mdx mice treated with control antibody revealed that Tregs partially protect mdx mice from muscle pathology and promote muscle repair/regeneration.
A special population of regulatory T cells potentiates muscle repair.
Sex, Age, Specimen part, Treatment
View SamplesIn this study, we investigated signaling pathways in Skeletal muscle precursors that are altered with aging and age-related deficits in muscle regenerative potential. We performed fluorescence activated cell sorting (FACS) to obtain highly purified skeletal muscle satellite cells from young, middle-aged and old mice.
Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle.
Specimen part
View SamplesStudy on differential gene expression and splicing between wildtype and clock mutants. This study is part of a comparative analysis of the role of Protein Methyltransferase 5 in the regulation of transcriptional and post-transcriptional processes simultaneously in Arabidopsis and Drosophila.
A methyl transferase links the circadian clock to the regulation of alternative splicing.
Specimen part
View SamplesIn this report, we describe a successful protocol for isolating and expression-profiling live fluorescent- protein-labelled neurons from zebrafish embryos. As a proof-of-principle for this method, we FAC-sorted and RNA-profiled GFP-labelled spinal CiA interneurons and compared the expression profile of these cells to those of post-mitotic spinal neurons in general and to all trunk cells. We show that RNA of sufficient quality and quantity to uncover both expected and novel transcription profiles via Affymetrix microarray analysis can be extracted from 5,700 to 20,000 FAC-sorted cells. As part of this study, we also further confirm the genetic homology of mammalian and zebrafish V1 interneurons, by demonstrating that zebrafish V1 cells (CiAs) express genes that encode for the transcription factors Lhx1a and Lhx5. This protocol for dissociating, sorting and RNA-profiling neurons from organogenesis-stage zebrafish embryos should also be applicable to other developing organs and tissues and potentially other model organisms.
RNA profiling of FAC-sorted neurons from the developing zebrafish spinal cord.
Age, Specimen part
View SamplesWe have used the citrus GeneChip array (GPL5731) to survey the transcription profiles of sweet orange in response to the bacterial pathogens Xanthomonas axonopodis pv. citri (Xac) and Xanthomonas axonopodis pv. aurantifolii (Xaa). Xac is the causal agent of the citrus canker disease on a wide range of citrus species, including sweet oranges (Citrus sinensis). On the other hand, Xaa is pathogenic to Mexican lime (Citrus aurantifolia) only, and in sweet orange it triggers a defense response. In order to identify the genes induced during the defense response (Xaa-responsive genes) or citrus canker development (Xac-responsive genes), we conducted microarrays hybridization experiments at 6 and 48 hours after bacterial infiltration (habi). The analysis revealed that genes commonly modulated by Xac and Xaa are associated with basal defenses normally triggered by pathogen-associated molecular patterns, including those involved in reactive oxygen species production and lignification. Significantly, Xac-infected leaves showed considerable changes in the transcriptional profiles of defense-, cell wall-, vesicle trafficking- and cell growth-related genes between 6 and 48 habi. This is consistent with the notion that Xac suppresses host defenses near the beginning of the infection and simultaneously changes the physiological status of the host to promote cell enlargement and division. Finally, Xaa triggered a MAP kinase signaling pathway involving WRKY and ethylene-responsive transcriptional factors known to activate downstream defense genes.
Transcriptional analysis of the sweet orange interaction with the citrus canker pathogens Xanthomonas axonopodis pv. citri and Xanthomonas axonopodis pv. aurantifolii.
No sample metadata fields
View SamplesMyofibroblast is a specific type of mesenchymal cell characterized by synthesis of extracellular matrix and contractile activity. While it serves a beneficial function during tissue wound healing under physiological conditions, it can cause devastating damage to organs afflicted with fibrosis. Myofibroblasts are also present in tumor stroma and contribute actively to tumor growth and spreading. Chicken embryo dermal myofibroblasts (CEDM) represent a novel ex vivo model suitable for the analysis of myofibroblastic phenotype as they show strongly pronounced, uniform and self-sustained myofibroblastic phenotype that is stable in time. As myofibroblastic differentiation is controlled chiefly by TGF-beta signaling, the understanding of the differentiation program entails the determination of TGF-beta-regulated genes. To achieve such a goal, we performed oligonucleotide microarray analysis of CEDM cells treated with a selective TGFBR1 kinase inhibitor. Genes reported previously to be under the control of TGF-beta signaling in mammalian cells appeared among the affected genes also in CEDM cells and many so far unknown TGF-beta targets were revealed.
Molecular analysis of the TGF-beta controlled gene expression program in chicken embryo dermal myofibroblasts.
Specimen part, Treatment
View Samples