Polycomb proteins control proliferation and cellular transformation regulating DNA replication independently of cell cycle checkpoints
Polycomb proteins control proliferation and transformation independently of cell cycle checkpoints by regulating DNA replication.
Specimen part
View SamplesTo ask whether MANF contributes to the rejuvenating effects of heterochronic parabiosis, we generated heterochronic pairs in which 20 month old WT mice were combined with either 4 month old MANFHet (O-YgHet) or WT (O-YgWT) littermates, and maintained for 5 weeks before analysis. Control pairs in which old WT mice were combined together (O-O) were used. Livers were collected from each animal in the pair and RNA was sequenced for 5 independent animals/condition. Overall design: RNA was extracted and sequenced for 5 animals/condition
MANF regulates metabolic and immune homeostasis in ageing and protects against liver damage.
Age, Subject
View SamplesExpansion for hematopoietic cells from umbilical cord blood is a strategy for use this cell source in clinic transplants, however, it is important to know about the genomic changes that can occur in expanded cells. In order to detect global expression profiles changes in hematopoietic stem and progenitors cells generated in vitro, we analyzed hematopoietics populations obtained by FACS in fresh from umbilical cord blood. HSC (fHSC) was defined as CD34+ CD38- CD71- CD45RA- Lin- and were cocultured with stromal cell line OP-9 plus FL, SCF, IL3, IL6, TPO, GMCSF and G-CSF by 7 days, after time we repurified HSC population by FACS using same immunophenotype (ivHSC). In other hand, fresh erythroid progenitors cells (fEPC) were identified as CD34+CD38+CD71+CD45RA- Lin- and fresh myeloid progenitors cells (fMPC) were identified as CD34+CD38+CD71-CD45RA+Lin-. In vitro progenitors cells (ivEPC and ivMPC) were obtained by culturing fHSC in Stemspan serum-free media plus SCF, TPO, IL6, FL and IL3 by 10 days, after time cells were repurified by FACS using same immunophenotype for fresh progenitors. In vitro generated cells were compared with their corresponding fresh population cells.
Functional Integrity and Gene Expression Profiles of Human Cord Blood-Derived Hematopoietic Stem and Progenitor Cells Generated In Vitro.
Specimen part
View SamplesBreast cancer (BC) is the most commonly diagnosed neoplasm in women worldwide and a well-recognized heterogeneous pathology classified into four molecular subtypes: Luminal A, Luminal B, HER2-enriched and Basal-like, each one with different biological and clinical characteristics. It is well recognize that clinical and molecular heterogeneity of BC is driven in part by mRNA and lncRNAs. We profiled mRNAs and lncRNA in 75 adjuvant tumors using an Affymetrix microarray platform.
A lncRNA landscape in breast cancer reveals a potential role for AC009283.1 in proliferation and apoptosis in HER2-enriched subtype.
Specimen part
View SamplesWe silenced lncRNA AC009283.1 using shRNAs in cell line SKBR3, carried a ~75% silencing compared to thenegative control (NC).
A lncRNA landscape in breast cancer reveals a potential role for AC009283.1 in proliferation and apoptosis in HER2-enriched subtype.
Cell line
View SamplesIn this study, the prognostic properties of miR-205 expression levels are investigated in a well-documented prostate cancer cohort. We show that miR-205 is correlated to shortened overall survival, significantly dividing the PCa patients into high and low risk groups. Furthermore, miR-205 is shown to inversely correlate to occurrence of metastases. In situ hybridization is also performed, demonstrating high miR-205 expression in the basal cells of benign prostate tissue glands. A RIP-Chip assay using an AGO2 antibody was implemented and the miR-205 targets identified were found to be enriched in MAPK/ERK, Toll-like receptor and IL-6 signaling pathways. We also found individual targets involved in cancer and androgen receptor signaling. Ectopic levels of miR-205 are shown to decrease the level of androgen receptor both at the mRNA and protein levels in prostate cancer cell lines. This is further corroborated in the prostate cancer cohort were miR-205 expression levels in the prostatic tissues are found to inversely correlate to assessment of androgen receptor (AR) immunostaining and to serum levels of PSA, a protein regulated by AR signaling. The level of miR-205 is also found to be significantly lower in castration resistant prostate cancer patients than in hormone nave patients. Our data indicates that miR-205 is regulated by androgens and act by different mechanisms in androgen depleted settings, e.g. giving opposite effects on adhesion. Taken together these findings imply that miR-205 might have therapeutic potential especially for the castration resistant and currently untreatable form of prostate cancer.
miR-205 negatively regulates the androgen receptor and is associated with adverse outcome of prostate cancer patients.
Specimen part, Cell line
View SamplesThe goal of this project was to analyze differential expression in head and neck cancer cells with various intrinsic radiosensitivity. The gene expression profiles of the cell lines were determined using the Human Genome U133 plus 2.0 Arrays (Affymetrix, Santa Clara, CA).
Fibronectin 1 is a potential biomarker for radioresistance in head and neck squamous cell carcinoma.
Specimen part, Cell line
View SamplesThe cochlea possesses a robust circadian clock machinery that regulates auditory function. How the cochlear clock is influenced by the circadian system remains unknown. Here we show that cochlear rhythms are system-driven and require local Bmal1 as well as central input from the suprachiasmatic nuclei (SCN). SCN ablations disrupted the circadian expression of the core clock genes in the cochlea. Since the circadian secretion of glucocorticoids (GCs) is controlled by the SCN and that GCs are known to modulate auditory function, we assessed their influence on circadian gene expression. Removal of circulating GCs by adrenalectomy (ADX) did not have a major impact on core clock gene expression in the cochlea. Rather it abolished the transcription of clock-controlled genes involved in inflammation. ADX abolished the known differential auditory sensitivity to day and night noise trauma and prevented the induction of GABA-ergic and glutamate receptors mRNA transcripts. However, these improvements were unrelated to changes at the synaptic level suggesting other cochlear functions may be involved. Due to this circadian regulation of noise sensitivity by GCs, we evaluated the actions of the synthetic glucocorticoid dexamethasone (DEX) at different times of the day. DEX was effective in protecting from acute noise trauma only when administered during daytime, when circulating glucocorticoids are low, indicating that chronopharmacological approaches are important for obtaining optimal treatment strategies for hearing loss. GCs appear as a major regulator of the differential sensitivity to day or night noise trauma, a mechanism likely involving the circadian control of inflammatory responses. Overall design: Cochlear samples from sham operated or adrenalectomized (ADX) CBA/Sca mice were collected every 4th hour during a 24h period and subjected to RNAseq (n=3 per time point, corresponding to a total of 36 samples).
Circadian Regulation of Cochlear Sensitivity to Noise by Circulating Glucocorticoids.
Age, Specimen part, Cell line, Subject
View SamplesIn a randomized controlled dietary intervention study, we compared a diet enriched in polyunsaturated fatty acids (PUFA) with a diet enriched in saturated fatty acids (SFA) for influence on abdominal subcutaneous adipose tissue gene expression. We studied young lean adults; 11 women and 25 men. There was no significant difference in age, BMI, or gene expression between the PUFA and SFA groups before the intervention. The intervention lasted for seven weeks.
Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans.
Sex, Age, Specimen part, Treatment, Subject, Time
View SamplesThe study tests the hypothesis that maternal mRNA translation in oocytes is sensitive to the environment in which the oocytes mature. Amphiregulin (AREG) is a critical signal for oocyte maturation but also for oocyte developmental competence. Here we have used a genome-wide approach to determine whether the oocyte translational program is affected when oocytes mature in vivo in the absence of AREG.
Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes.
Specimen part
View Samples