Tumor tissue heterogeneity is a well known feature of several solid tumors. Neuroblastic Tumors (NTs) is a group of paediatric cancers with a great tissue heterogeneity. Most of NTs are composed of undifferentiated, poorly differentiated or differentiating neuroblastic (Nb) cells with very few or absent Schwannian stromal (SS) cells: these tumors are grouped as Neuroblastoma (Schwannian stroma-poor). The remaining NTs are composed of abundant SS cells and classified as Ganglioneuroblastoma (Schwannian stroma-rich) intermixed or nodular and Ganglioneuroma. The importance to understand Nb and SS gene signatures in NTs, is to clarify the complex network mechanism of tumor growth and progression. In order to identify the Nb and SS cells gene signatures, we analyzed the gene expression profiling of 19 cases of neuroblastic tumors: 10 stroma poor (NTs-SP) and 9 stroma rich (NTs-SR), by high density oligonucleotide microarrays. Moreover, the analysis was performed in parallel on both whole and laser microdissected tumor samples: from 4 of 19 cases, was isolated different areas all composed of pure cellular populations.
Identification of low intratumoral gene expression heterogeneity in neuroblastic tumors by genome-wide expression analysis and game theory.
No sample metadata fields
View SamplesBackground: Zidovudine remains the cornerstone drug for prophylaxis to prevent mother-to-child HIV-1 transmission. A mild but long-lasting hematological multilineage defect is observed in children exposed in utero.
Genotoxic signature in cord blood cells of newborns exposed in utero to a Zidovudine-based antiretroviral combination.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation.
Specimen part, Disease
View SamplesTranscriptional profiling of KP and DK through RNA-seq Overall design: RNA-sequencing of KP and DK
Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation.
No sample metadata fields
View SamplesGene expression profiling of progenitor and differentiated keratinocytes by Affymetrix microarray
Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation.
Specimen part
View SamplesInvestigation of promoters usage in KP cells Overall design: KP cells promoter usage profiling by CAGE-seq
Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation.
No sample metadata fields
View SamplesPoorly differentiated thyroid carcinomas (PDTC) represent a heterogeneous, aggressive entity, presenting features that suggest a progression from well-differentiated carcinomas.
Gene expression profiling associated with the progression to poorly differentiated thyroid carcinomas.
Sex, Age, Specimen part
View SamplesmRNA from wild-type (Cre-) and MLL1-deficient (Cre+) BMDMs were analyzed via gene chip (Mouse Gene ST 2.1, Affymetrix) for relative expression changes. Isolated mRNA from Cre- and Cre+ BMDMs stimulated with classical activation signals (IFNg, LPS or IFNg+LPS) was analyzed using a gene chip panel of >40,000 RefSeq transcripts, and resulting fold expression was determined by analyzing quality-controlled expression values for validated probesets.
The STAT4/MLL1 Epigenetic Axis Regulates the Antimicrobial Functions of Murine Macrophages.
No sample metadata fields
View SamplesATC are among the most lethal malignancies, for which there is no effective treatment.
Cell cycle deregulation and TP53 and RAS mutations are major events in poorly differentiated and undifferentiated thyroid carcinomas.
Sex, Specimen part
View SamplesOur understanding of cellular mechanisms by which animals regulate their response to starvation is limited despite the close relevance of the problem to major human health issues. L1 diapause of Caenorhabditis elegans, where newly hatched first stage larval arrested in response to food-less environment, is an excellent system to study the problem. We found through genetic manipulation and lipid analysis that ceramide biosynthesis, particularly those with longer fatty acid side chains, critically impacts animal survival during L1 diapause. Genetic and expression analyses indicate that ceramide likely regulate this response by affecting gene expression and activity in multiple regulatory pathways known to regulate starvation-induced stress, including the insulin-IGF-1 signaling (IIS) pathway, Rb and other pathways that mediate pathogen/toxin/oxidative stress responses. These findings provide an important insight into the roles of sphingolipid metabolism in not only starvation response but also aging and food-response related human health problems.
Starvation-Induced Stress Response Is Critically Impacted by Ceramide Levels in Caenorhabditis elegans.
No sample metadata fields
View Samples