Pulmonary exposure to multiwalled carbon nanotubes (MWCNT) induces an inflammatory and rapid fibrotic response, although the long-term signaling mechanisms are unknown. The aim of this study was to examine the effects of 1, 10, 40, or 80 g MWCNT administered by pharyngeal aspiration on bronchoalveolar lavage (BAL) fluid for polymorphonuclear cell (PMN) infiltration, lactate dehydrogenase (LDH) activity, and lung histopathology for inflammatory and fibrotic responses in mouse lungs 1 mo, 6 mo, and 1 yr postexposure. Further, a 120-g crocidolite asbestos group was incorporated as a positive control for comparative purposes. Results showed that MWCNT increased BAL fluid LDH activity and PMN infiltration in a dose-dependent manner at all three postexposure times. Asbestos exposure elevated LDH activity at all 3 postexposure times and PMN infiltration at 1 mo and 6 mo postexposure. Pathological changes in the lung, the presence of MWCNT or asbestos, and fibrosis were noted at 40 and 80 g MWCNT and in asbestos-exposed mice at 1 yr postexposure. To determine potential signaling pathways involved with MWCNT-associated pathological changes in comparison to asbestos, up- and down-regulated gene expression was determined in lung tissue at 1 yr postexposure. Exposure to MWCNT tended to favor those pathways involved in immune responses, specifically T-cell responses, whereas exposure to asbestos tended to favor pathways involved in oxygen species production, electron transport, and cancer. Data indicate that MWCNT are biopersistent in the lung and induce inflammatory and fibrotic pathological alterations similar to those of crocidolite asbestos, but may reach these endpoints by different mechanisms.
Multiwalled carbon nanotube-induced pulmonary inflammatory and fibrotic responses and genomic changes following aspiration exposure in mice: A 1-year postexposure study.
Specimen part
View SamplesHeat stress is one of the most prominent and deleterious environmental threads affecting plant growth and development. Upon high temperatures, plants launch specialized gene expression programs that promote stress protection and survival. These programs involve global and specific changes at the transcriptional and translational levels. However the coordination of these processes and their specific role in the establishment of the heat stress response is not fully elucidated.
Analysis of genome-wide changes in the translatome of Arabidopsis seedlings subjected to heat stress.
Specimen part
View SamplesWe examined the impact of Abca1 deficiency and APOE isoform expression on the response to TBI using 3-months-old, human APOE3+/+ (E3/Abca1+/+) and APOE4+/+ (E4/Abca1+/+) targeted replacement mice, and APOE3+/+ and APOE4+/+ mice with only one functional copy of the Abca1 gene (E3/Abca1+/-; E4/Abca1+/-). TBI-treated mice received a craniotomy followed by a controlled cortical impact (CCI) brain injury in the left hemisphere; sham-treated mice received the same surgical procedure without the impact. We performed RNA-seq using samples from cortices and hippocampi collected at 14 days post-injury, followed by genome-wide differential gene expression analysis. Overall design: We used 3-months-old, human APOE3+/+ (E3/Abca1+/+) and APOE4+/+ (E4/Abca1+/+) targeted replacement mice, and APOE3+/+ and APOE4+/+ mice with only one functional copy of the Abca1 gene (E3/Abca1+/-; E4/Abca1+/-). Groups consisted of 6-8 animals of both genders. TBI-treated mice received a craniotomy followed by a controlled cortical impact (CCI) brain injury in the left hemisphere; sham-treated mice received the same surgical procedure without the impact. We performed RNA-seq using samples from cortices and hippocampi collected at 14 days post-injury from 58 samples, followed by genome-wide differential gene expression analysis.
ABCA1 haplodeficiency affects the brain transcriptome following traumatic brain injury in mice expressing human APOE isoforms.
Sex, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide methylation analysis in vestibular schwannomas shows putative mechanisms of gene expression modulation and global hypomethylation at the HOX gene cluster.
Specimen part
View SamplesBackground: Schwannomas and grade I meningiomas are non-metastatic neoplasms that shares the common mutation of gene NF2. They usually appear in Neurofibromatosis type 2 patients. Currently, there is no drug treatment available for both tumors, so the use of wide expression technologies is crucial to find those therapeutic targets.
Global expression profile in low grade meningiomas and schwannomas shows upregulation of PDGFD, CDH1 and SLIT2 compared to their healthy tissue.
Specimen part
View SamplesVestibular schwannomas are intracranial tumors that affects unilateral and sporadically or bilateral when is associated to Neurofibromatosis type 2 syndrome. The hallmark of the disease is the biallelic inactivation by NF2 gene mutation or LOH of chromosome 22q, where this gene harbors. In this work, we used Infinium HumanMethylation 450K BeadChip microarrays in a series of 36 vestibular schwannomas, 4 non-vestibular schwannomas and 5 healthy nerves. Our results shows a trend to hypomethylation in schwannomas. Furthermore, HOX genes, located at 4 clusters in the genome, displayed hypomethylation in numerous CpG sites in vestibular but not in non-vestibular schwannomas. Additionally, several microRNA and protein-coding genes were found hypomethylated at promoter regions and confirmed by expression analysis; including miRNA-199a1, miRNA-21, MET and PMEPA1. We also detected methylation patterns that might be involved in alternative transcripts of several genes such as NRXN1 or MBP; that would increase the complexity of methylation-expression. Overall, our results shows specific epigenetic signatures in several coding genes and microRNA that could be used in the finding of potential therapeutic targets.
Genome-wide methylation analysis in vestibular schwannomas shows putative mechanisms of gene expression modulation and global hypomethylation at the HOX gene cluster.
Specimen part
View SamplesVestibular Schwannomas are benign neoplasms that arise from the vestibular nerve. The hallmark of these tumors is the biallelic inactivation of NF2. Transcriptomic alterations, such as the Nrg1/ErbB2 pathway, have been described in Schwannomas. Here, we have performed a whole transcriptomic analysis in 31 vestibular Schwannomas and 9 control nerves in the Affymetrix Gene 1.0ST platform, validated by quantitative Real-Time PCR using TaqMan Low Density Arrays. We performed a mutational analysis of NF2 by PCR/dHPLC and MLPA as well as a microsatellite marker analysis of the loss of heterozygosity of chromosome 22q. The microarray analysis showed that 1516 genes were deregulated, and 48 of the genes were validated by qRT-PCR. At least two genetic hits (allelic loss and/or gene mutation) in NF2 were found in 16 tumors, seven cases showed one hit and eight tumors showed no NF2 alteration. As conclusion, MET and associated genes such as ITGA4/B6, PLEXNB3/SEMA5 and CAV1 showed a clear deregulation in vestibular Schwannomas. In addition, androgen receptor (AR) downregulation may denote a hormonal effect or cause in this tumor. Furthermore, the osteopontin gene (SPP1), which is involved in Merlin protein degradation, was upregulated, which suggests that this mechanism may also exert a pivotal role in Schwannoma Merlin depletion. Finally, no major differences were found between tumors of different sizes, histological types or NF2 status, which suggests that at the mRNA level all Schwannomas, regardless of molecular and clinical characteristics, may share common features that can be used in the fight against them.
Microarray analysis of gene expression in vestibular schwannomas reveals SPP1/MET signaling pathway and androgen receptor deregulation.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cinacalcet inhibits neuroblastoma tumor growth and upregulates cancer-testis antigens.
Specimen part, Treatment
View SamplesCaSR modulation inhibits neuroblastoma growth
Cinacalcet inhibits neuroblastoma tumor growth and upregulates cancer-testis antigens.
Specimen part, Treatment
View SamplesCaSR modulation inhibits neuroblastoma growth
Cinacalcet inhibits neuroblastoma tumor growth and upregulates cancer-testis antigens.
Specimen part, Treatment
View Samples