In gastrulation, distinct progenitor cell populations are induced and sorted into the three germ layers ectoderm, mesoderm and endoderm. In order to identify genes involved in germ layer specification and morphogenesis, we identified genes differentially expressed between ectodermal and mesendodermal progenitor cells. To do so, we first generated highly enriched pools of ectodermal and mesendodermal progenitor cells. Mesendodermal cells were generated by over-expressing the Nodal signal Cyclops in wild type embryos and ectodermal cells were taken from mz-one-eyed-pinhead (oep) mutant embryos. We then compared the transcriptome of ectodermal versus mesendodermal cells taken from embryos at 7 hours post fertilization (hpf). In wild type embryos at this stage (70% epiboly), the first ectodermal and mesendodermal progenitor cells have already been sorted into their respective germ layers and ingression of mesendodermal progenitors is still ongoing.
Identification of regulators of germ layer morphogenesis using proteomics in zebrafish.
Age, Specimen part, Subject, Time
View SamplesOrganoids derived from human pluripotent stem cells recapitulate the early three-dimensional organization of human brain, but whether they establish the epigenomic and transcriptional programs essential for brain development is unknown. We compared epigenomic and gene regulatory features in cerebral organoids and human fetal brain, using genome-wide, base resolution DNA methylome and transcriptome sequencing. Transcriptomic dynamics in organoids faithfully modeled gene expression trajectories in early-to-mid human fetal brains. We found that early non-CG methylation accumulation at super-enhancers in both fetal brain and organoids marks forthcoming transcriptional repression in the fully developed brain. 74% of 35,627 demethylated regions identified during organoid differentiation overlapped with fetal brain regulatory elements. Interestingly, pericentromeric repeats showed widespread demethylation in multiple types of in vitro human neural differentiation models but not in fetal brain. Our study reveals that organoids recapitulate many epigenomic features of mid-fetal human brain and also identified novel non-CG methylation signatures of brain development. Overall design: MethylC-seq and RNA-seq of Cerebral Organoids differentiation
Cerebral Organoids Recapitulate Epigenomic Signatures of the Human Fetal Brain.
No sample metadata fields
View SamplesHeat stress is one of the most prominent and deleterious environmental threads affecting plant growth and development. Upon high temperatures, plants launch specialized gene expression programs that promote stress protection and survival. These programs involve global and specific changes at the transcriptional and translational levels. However the coordination of these processes and their specific role in the establishment of the heat stress response is not fully elucidated.
Analysis of genome-wide changes in the translatome of Arabidopsis seedlings subjected to heat stress.
Specimen part
View SamplesThe role of androgen in breast cancer development is not fully understood although androgen receptors (AR) have been identified in breast cancer clinical samples and cell lines. However the whole spectra of androgen actions cannot be accounted to the classic AR mode of action and the possible existence of a cell surface AR has been suggested. Indeed androgens like all steroids have been reported to trigger membrane initiated signaling activity and exert specific actions. Androgens acting on the membrane can rapidly activate kinase signaling pathways and ultimately could affect gene expression. However, the molecular nature of membrane androgen binding sites represents another major persisting question. In the present study, we investigated early transcriptional effects of testosterone and the impermeable testosterone-BSA conjugate, in two breast cancer cell lines, in an attempt to decipher specific genes modified in each case, providing evidences about specific membrane initiating actions. Our data indicate that the two agents tested affect the expression of several genes. A group of genes were commonly affected while others were uniquely modified by each agent. In MDA-MB-231 cells, that are AR negative, the majority of genes affected by testosterone were also affected by testosterone-BSA indicating a membrane action. Subsequent analysis revealed that the two agents trigger different molecular pathways and cellular/molecular functions, suggestive of a molecular heterogeneity of membrane and intracellular AR. In addition, the phenotypic interactions of membrane-acting androgen with growth factor were verified at the transcriptomic level. Finally an interesting interplay between membrane-acting androgen with inflammation-related molecules, with potential clinical implications was revealed.
Conjugated and non-conjugated androgens differentially modulate specific early gene transcription in breast cancer in a cell-specific manner.
Specimen part, Cell line
View SamplesWiskott-Aldrich syndrome (WAS) predisposes patients to leukemia and lymphoma. WAS is caused by mutations in the protein WASP which impair its interaction with the WIPF1 protein. Here, we aim to identify a module of WIPF1-coexpressed genes and to assess its use as a prognostic signature for colorectal cancer, glioma, and breast cancer patients. Two public colorectal cancer microarray data sets were used for discovery and validation of the WIPF1 co-expression module. Based on expression of the WIPF1 signature, we classified more than 400 additional tumors with microarray data from our own experiments or from publicly available data sets according to their WIPF1 signature expression. This allowed us to separate patient populations for colorectal cancers, breast cancers, and gliomas for which clinical characteristics like survival times and times to relapse were analyzed. Groups of colorectal cancer, breast cancer, and glioma patients with low expression of the WIPF1 co-expression module generally had a favorable prognosis. In addition, the majority of WIPF1 signature genes are individually correlated with disease outcome in different studies. Literature gene network analysis revealed that among WIPF1 co-expressed genes known direct transcriptional targets of c-myc, ESR1 and p53 are enriched. The mean expression profile of WIPF1 signature genes is correlated with the profile of a proliferation signature. The WIPF1 signature is the first microarray-based prognostic expression signature primarily developed for colorectal cancer that is instrumental in other tumor types: low expression of the WIPF1 module is associated with better prognosis.
An expression module of WIPF1-coexpressed genes identifies patients with favorable prognosis in three tumor types.
Sex, Age
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression.
Specimen part, Cell line
View SamplesAberrant activation of WNT signaling and loss of BMP signals represent the two main alterations leading to the initiation of colorectal cancer (CRC). Here we screen for genes required for maintaining the tumor stem cell phenotype and identify the zinc-finger transcription factor GATA6 as key regulator of the WNT and BMP pathways in CRC. GATA6 directly drives the expression of LGR5 in adenoma stem cells while it restricts BMP signaling to differentiated tumor cells. Genetic deletion of Gata6 in mouse colon adenomas increases the levels of BMP factors, which signal to block self-renewal of tumor stem cells. In human tumors, GATA6 competes with beta-catenin/TCF4 for binding to a distal regulatory region of the BMP4 locus that has been previously linked to increased susceptibility to develop CRC. Hence, GATA6 creates a permissive environment for tumor stem cell expansion by controlling the major signaling pathways that influence CRC initiation.
The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression.
Specimen part, Cell line
View SamplesAberrant activation of WNT signaling and loss of BMP signals represent the two main alterations leading to the initiation of colorectal cancer (CRC). Here we screen for genes required for maintaining the tumor stem cell phenotype and identify the zinc-finger transcription factor GATA6 as key regulator of the WNT and BMP pathways in CRC. GATA6 directly drives the expression of LGR5 in adenoma stem cells while it restricts BMP signaling to differentiated tumor cells. Genetic deletion of Gata6 in mouse colon adenomas increases the levels of BMP factors, which signal to block self-renewal of tumor stem cells. In human tumors, GATA6 competes with beta-catenin/TCF4 for binding to a distal regulatory region of the BMP4 locus that has been previously linked to increased susceptibility to develop CRC. Hence, GATA6 creates a permissive environment for tumor stem cell expansion by controlling the major signaling pathways that influence CRC initiation.
The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Whole transcriptome analysis of the ERα synthetic fragment P295-T311 (ERα17p) identifies specific ERα-isoform (ERα, ERα36)-dependent and -independent actions in breast cancer cells.
Cell line
View SamplesER17p is a synthetic peptide corresponding to the sequence P295LMIKRSKKNSLALSLT311 of the estrogen receptor alpha (ER) and initially synthesized to mimic its calmodulin binding site. ER17p was subsequently found to elicit estrogenic responses in E2-deprived ER-positive breast cancer cells, increasing proliferation and E2-dependent gene transcription. Surprisingly, in E2-supplemented media, ER17p induced apoptosis and modified the actin network, influencing thereby cell motility. Here, we report that ER17p induces a massive early (3h) transcriptional activity in breast cancer cell lines SKBR3). Remarkably, about 75% of the significantly modified transcripts were also modified by E2, confirming the pro-estrogenic profile of ER17p. The different ER spectra of the used cell lines allowed us to extract a specific ER17p signature related to ER and its variant ER36. With respect to ER, the peptide activates nuclear (cell cycle, cell proliferation, nucleic acid and protein synthesis) and extranuclear signaling pathways. In contrast, through ER36 it exerts inhibitory events on inflammation and cell cycle and inhibition of EGFR signaling. This is the first work reporting ER36 specific transcriptional effects. The fact that a number ER17p-induced transcripts is different from those activated by E2 revealed that the apoptosis and actin modifying effects of ER17p are independent from the ER-related actions of the peptide.
Whole transcriptome analysis of the ERα synthetic fragment P295-T311 (ERα17p) identifies specific ERα-isoform (ERα, ERα36)-dependent and -independent actions in breast cancer cells.
Cell line
View Samples