In an accompanying paper we found specific localization of diabetogenic T cells only to islets of Langerhans bearing the specific antigen. Instrumental in the specific localization was the presence of intra-islet dendritic cells bearing the -cell-peptide-MHC complex. Here we report that the entry of diabetogenic CD4 T cells very rapidly triggered inflammatory gene expression changes in islets and vessels by up-regulating chemokines and adhesion molecules. VCAM-1 expression was notable in blood vessels and so was ICAM-1. ICAM-1 was also found on -cells. These expression changes induced the entry of non-specific T cells that otherwise did not localize to the islets. In contrast to the entry of diabetogenic CD4 T cells, the entrance of non-specific T cells required a chemokine response and VCAM-1 expression by the islets. Interferon-gamma was important for the early gene expression changes in the islets. By microarray analysis we detected up-regulation of a group of interferon-inducible genes as early as 8 hours post T cell transfer. These studies provide a baseline to examine the development of therapeutics that can modulate islet localization of diabetogenic T cells to control this autoimmune disease.
Entry of diabetogenic T cells into islets induces changes that lead to amplification of the cellular response.
Specimen part
View SamplesType 1 diabetes (T1D) is an autoimmune disease triggered by T cell reactivity to protein antigens produced by the -cells. Here we present a chronological compendium of transcriptional profiles from islets of Langerhans isolated from non-obese diabetic (NOD) mice ranging from 2 wks up to diabetes and compared to controls. Parallel analysis was made of cellular components of the islets. Myeloid cells populated the islets early during development in all mouse strains. This was followed by a type I interferon signature detectable at 4-6 wks of age only in diabetes susceptible mice. Concurrently, CD4 T cells were found within islets, many in contact with intra-islet antigen presenting cells. Early cellular signs of islet reactivity were detected by six wks. By 8 wks, NOD islets contained all major leukocytes populations and an inflammatory gene signature. This work establishes the natural transcriptional signature of T1D and provides a resource for future research.
Defining the transcriptional and cellular landscape of type 1 diabetes in the NOD mouse.
Specimen part
View SamplesNOD mice deficient in the transcription factor Batf3 never develop diabetes. The goal of this study was to determine if NOD.Batf3-/- mice islets had any inflammatory signature associated with type 1 diabetes. Islets of Langerhans were isolated from NOD, NOD.Batf3-/-, and NOD.Rag1-/- and then compared to determine inflammatory gene profiles. At 6 and 8 weeks of age, NOD.Batf3-/- islets had an absence of inflammatory gene expression and were almost identical to uninflamed NOD.Rag1-/- islets. This work shows that absence of the Batf3 transcription factor is sufficient to prevent all the inflammatory sequelae of autoimmune diabetes.
A minor subset of Batf3-dependent antigen-presenting cells in islets of Langerhans is essential for the development of autoimmune diabetes.
Sex, Specimen part
View SamplesWe examined the transcriptional profiles of macrophages that reside in the islets of Langerhans of NOD, NOD.Rag1-/-, and B6.g7 mice at three weeks of age. Islet macrophages expressed an activation signature with high expression of Tnf, Il1b, and MHC-II both at the transcript and protein levels. These features are common with barrier macrophages of the lung and gastrointestinal tract. Moreover, injection of lipopolysaccharide induced a rapid inflammatory gene expression, indicating that blood stimulants are accessible to the macrophages and that these macrophages can sense them. In NOD mice, the autoimmune process imparted an increased inflammatory signature, including elevated expression of chemokines, chemokine receptors, and an oxidative response. The elevated inflammatory signature indicates that the autoimmune program was active at the time of weaning. Thus, the macrophages of the islets of Langerhans are poised to mount an immune response even at steady state, while the presence of the adaptive immune system elevates their activation state. Overall design: We examined the transcriptional profiles of macrophages that reside in the islets of Langerhans of NOD, NOD.Rag1-/-, and B6.g7 mice at three weeks of age. Lung macrophages and pancreatic LN dendritic cells of NOD mice were also examined.
The islet-resident macrophage is in an inflammatory state and senses microbial products in blood.
Age, Specimen part, Cell line, Subject
View SamplesWe report that WT1 transcriptional repressor protein BASP1 interacts with oestrogen receptor alpha (Era), and interaction which in enhanced in the presence of Tamoxifen. We utilised RNASeq to identify common BASP1 and ERa target genes as well as Tamoxifen responsive genes that are altered in the absence of BASP1. Overall design: Total mRNA sequencing analysis of MCF7 cells treated with either siRNA against BASP1 or negative control siRNA, with and without Tamoxifen treatment. Each experiment was performed in triplicate.
BASP1 interacts with oestrogen receptor α and modifies the tamoxifen response.
No sample metadata fields
View Samplesp63 is critical for epithelial development yet little is known about the transcriptional programmes it regulates. The p63 transactivating (TA) isoforms contain an amino-terminal exon that encodes a p53-like transactivation domain, whereas N-isoforms lack this domain but contain the common DNA binding domain (DBD), suggesting that TAp63 and Np63 isoforms may have opposing functions. By characterising transcriptional changes and cellular effects following modulation of p63 expression, we have defined a vital role for p63 in cellular adhesion. Knockdown of p63 expression caused downregulation of cell adhesion-associated genes, cell detachment and anoikis in mammary epithelial cells and keratinocytes. Conversely, overexpression of the TAp63 or Np63 isoforms of p63 upregulated cell adhesion molecules, increased cellular adhesion and conferred resistance to anoikis.
p63 regulates an adhesion programme and cell survival in epithelial cells.
Cell line
View SamplesWe used microarrays to unveil the gene expression alterations upon short-term HFD administration
Dietary alterations modulate susceptibility to Plasmodium infection.
Specimen part
View SamplesTo elucidate the mechanisms by which Nrf2 regulates cell growth, we performed global gene expression profiling of A549 lung cancer cells with knockdown of Nrf2. Gene networks associated with carbohydrate metabolism and drug metabolism were significantly downregulated in Nrf2-depleted A549 cells. Gene Set Enrichment Analysis revealed significant enrichment of genes associated with carbohydrate catabolic processes, positive regulation of metabolic processes, PPP, and arachidonic acid metabolism. In summary, this analysis revealed that Nrf2 positively regulates transcription of genes that play key roles in central carbon metabolism.
Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis.
Specimen part, Cell line
View SamplesMM1.S cells stably transduced with control or b-catenin shRNA were established. Total RNA was isolated from 5x 10^6 cells of each in triplicate.
Aurora kinase A is a target of Wnt/beta-catenin involved in multiple myeloma disease progression.
Cell line
View SamplesNumerous studies have shown the potential of spermatozoal RNAs to delineate failures of spermatogenic pathways in infertile samples. However, the RNA contribution of normal fertile samples still needs to be established in relation to transcripts consistently present in human spermatozoa. We report here the spermatozoal transcript profiles characteristic of 24 normally fertile individuals. RNA was extracted from the purified sperm cells of ejaculate and hybridized to Illumina Human-8 BeadChip Microarrays
Identification of human sperm transcripts as candidate markers of male fertility.
No sample metadata fields
View Samples